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Abstract
It is widely known that humans can respond to events they ex-
pect more quickly than to unexpected events, but we still have a
poor understanding of why. Models exist that derive a relation
between subjective probability and response time on the basis
of optimal perceptual discrimination, but these models rely on
the ability of the responder control over perceptual sampling
of the environment, rendering them problematic for some do-
mains, such as auditory language processing, in which there
are nevertheless clear dependencies between probability and
response time. We present a new model deriving the relation-
ship between probability and reaction time as a consequence
of optimal preparation. This model is valid under very gen-
eral conditions, requiring only that the results of optimization
are invariant across scale of input stimulus granularity. The
model makes the strong prediction that response times should
scale linearly with the negative conditional log-probability of
the stimulus. We present evidence for this prediction in an
analysis of an existing database of eye movements in the read-
ing of naturalistic texts.
Keywords: Optimal behavior; Language; Response time mod-
eling; Surprisal; Sentence comprehension; Eye movements;
Reading

Introduction
It takes time to perform computation using a physical device,
and the human brain is such a device. While obvious, this
point is worth revisiting in light of the recent surge of interest
in rational models of optimal behavior (Chater et al., 2006;
Todorov, 2004). Such models have provided elegant explana-
tions for many aspects of behavior, but processing time pro-
vides a particular challenge for this approach. In general, hu-
mans respond to different stimuli within any given class with
different speeds, and response times are a large part of the
stock and trade of experimental cognitive psychology. From
an optimality perspective, the difficulty is that it is unclear
why the time to spend on performing a computation should
ever be larger than the physical minimum. Yet, from a theo-
retical point of view, response times seem like the perfect can-
didate for an optimality approach, because they are so clearly
relevant to evolutionary fitness. We are all real-time organ-
isms who must react quickly and correctly in a wide variety
of circumstances. So why are we still so much slower than
we could be?

The primary approach to these problems deployed within
the Bayes-optimal framework has been to ascribe reaction
times and other such delays to the sensory system. The argu-
ment is that we require accurate information about the world
to act, but our sensory system is noisy. Therefore, to ac-
quire accurate information, we must wait and gather multiple

noisy samples from which to (Bayes-optimally) average out
the noise and extract the signal; if we are optimal perceptual
discriminators then the number of samples we must gather
(and thus how long we must wait) depends on the form of the
signal, of the noise, and of our prior beliefs. (For one exam-
ple of this approach in the context of word recognition, see
Norris, 2006.) It seems unlikely, however, that the sensory
system is to blame for all response delays; we are reminded
every time we start up our computers that computation qua
computation takes time.

Furthermore, while such models seem plausible for visual
perception, it is unclear how they might apply to, for instance,
audition. We have reasonable control over how long we look
at a scene, but very little control over how long we listen to an
utterance. Yet, tasks using single auditorily presented words
as stimuli find systematic variation in reaction time — and,
in fact, these variations are similar to those observed in cor-
responding visual presentation paradigms (Goldinger, 1996).

This is one reason that we believe language to be a fruitful
area in which to investigate alternative approaches to model-
ing processing time as an optimal behavior. While language
can be presented in the written modality, which is very con-
venient for experimentation, the bulk of our exposure is to
spoken language, and the spoken modality has primacy both
evolutionarily and developmentally. To the extent, then, that
sensory sampling approaches couched in the framework of
optimal perceptual discrimination are implausible for spoken
language comprehension, these approaches are unlikely to
provide the full story for general language processing. On the
other hand, language processing is highly practiced and very
efficient, which suggests that some other kind of optimality
approach would still be valuable.

In this paper, we present a new model of optimal response
time couched in a framework of optimal preparation that
we believe may be more appropriate to domains such lan-
guage processing in which we cannot always control time
of sensory exposure. This model is motivated by the well-
established fact that processing times in language compre-
hension are probability-sensitive: in a given context, words
which are more predictable are also read more quickly (e.g.
Ehrlich & Rayner, 1981). This is intuitively sensible — cer-
tainly we would prefer it to the reverse! — but it is, as yet,
inadequately theorized. Our model explains this result as op-
timal behavior under a cost function which trades off prepa-
ration costs versus processing time; one would like to pro-



cess quickly, but this requires preparation, and preparation
is expensive in its own right. This model makes strong pre-
dictions about the relationship between probability, optimal
preparation costs, and optimal reading times. We then test the
model’s prediction about probability and reading time against
a corpus of naturalistic language processing data.

Model
How much preparation is too much?
Our main idea is that in general, the nervous system does not
operate at the fastest possible speed, and that the reason for
this is that operating at the limits of efficiency is very expen-
sive. Instead, it adjusts its performance on particular tasks
to optimize a composite cost function that balances the speed
achieved against the costs of achieving that speed.

We further assume that this optimization occurs before
each stimulus is actually encountered, because once the stim-
ulus is encountered it is too late to reallocate resources — one
has whatever resources one has, and all there is to do is to pro-
cess the stimulus as fast as possible given those constraints.
Thus there are two stages, each with a cost: the pre-stimulus
or “preparatory” period, where optimization occurs, and the
post-stimulus or “processing” period, lasting from stimulus
onset until an appropriate response can be made. The dura-
tion of the latter is evolutionarily relevant and what we com-
monly measure experimentally, but the costs incurred in the
former are presumably just as important to the brain.

Formally, assume that for a given context there are n possi-
ble stimuli that we may possibly encounter (in the case of
reading, these stimuli could be the words that may occur
next), and we may freely choose how long each will take us
to process, subject to an additive global cost function:

C(t) =
n

∑
i=1

r(ti)+E(tI |context). (1)

Here ti is the time we will require to process stimulus i if it
appears, t = 〈t1, t2, . . .〉 is the vector of all such times. Our
goal is to select t in such a way that we minimize our over-
all cost C(t). The cost is composed of two parts. The first
term, ∑i r(ti), corresponds to the preparation cost we incur
before encountering the stimulus; r(ti) denotes the cost of in-
vesting resources to prepare for stimulus i, and we prepare
for all possible stimuli (though, at our option, in differing
amounts). The second term, E(tI |context), corresponds to the
time it will take to process the stimulus that we do, in fact, en-
counter; since the stimulus has not yet occurred, its identity is
a random variable, I, and we can only optimize the expected
time for processing it. Simple calculus then shows that (1) is
minimized when

ti = (r′)−1(−pi) (2)

where pi = P(I = i|context), and r′ denotes the derivative.
This unwieldy formula becomes clearer if define f (x) =
(r′)−1(−x):

ti = f (pi). (2′)

In any case, we are done as soon as we work out what form
r(t) takes. This function summarizes the costs involved in
many kinds of preparation occurring over many time-scales.
For instance, these might over the short term involve the at-
tentional resources required to speculatively pre-compute re-
sponses to stimuli that are especially likely in this context;
over the medium term, the metabolic costs of maintaining
more or less precise cortical circuit tuning; and over the long
term, the allocation of limited cortical area to items which
prove themselves to be reliably common. We therefore do
not assume or attempt to derive any particular functional form
for r(t) from first principles, and limit ourselves to two sim-
ple assumptions: (i) that it depends only on the chosen time
ti and not on any other specific properties of the context or
stimulus; and (ii) that it is some smooth and monotonic de-
creasing function. We turn instead to the particular attributes
of our system of interest, language.

Scale-free assumption
One of language’s most celebrated properties is that it has
hierarchical structure, with regularities occurring at all lev-
els of granularity from, e.g., sentences to clauses to words to
morphemes to letters or phonemes. In our experiments we
may choose to measure processing time at word granularity,
but we have no reason to believe that this is a uniquely pre-
ferred scale for the brain. Spoken language is essentially a
continuous auditory stream, and clearly there are many op-
tions for how to break it into discrete, enumerable ‘stimuli’
as required by our model. Therefore, instead of trying to de-
rive r(t) directly, let us require that our model give the same
answer regardless of the temporal granularity we use to divide
our stimuli.

Formally, suppose we have some item i (e.g., a word)
which we can partition into smaller items i1, . . . , im (e.g., the
phonetic segments in that word). Let pi j denote the condi-
tional probability that i j appears given that i1, . . . , i j−1 have
appeared previously — i.e., pi j = P(i j|i1, . . . , i j−1,context)
— while pi as defined above can be rewritten as
P(i1, . . . , im|context). Applying the chain rule to these for-
mulas shows that probability of the larger item is sim-
ply the product of the probabilities of the smaller items:
pi = ∏

m
j=1 pi j. On the other hand, the time taken to process

the larger item is the sum of times taken to process its parts
ti = ∑ j ti j. By (2′), ti j = f (pi j). Substituting into (2′), we find

∑
j

f (pi j) = f (∏
j

pi j).

That is, the function f turns products into sums. The only
non-trivial functions with this property are logarithms. Work-
ing backwards and minding the appropriate monotonicity
conditions, we conclude

ti =− logk pi (3)

r(t) =
k−t

loge k
(4)

where k > 1 is a free parameter.
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Figure 1: Shape of preparation cost curve r(t) derived in (4),
for k = 1.89 (chosen to match reading time data). X axis gives
the different achievable processing times that we select from
before encountering the stimulus; Y axis gives the cost for
selecting any given time, which in equation (1) is then added
to the average actual processing time to produce the total cost.

Predictions

Our model therefore makes two strong predictions about the
processing of stimuli which are continuous and have scale-
free hierarchical structure in time: that preparation costs drop
off exponentially as the chosen processing time increases (see
Figure 1), and that ultimately processing time of a linguistic
unit should be proportional to the negative log of that unit’s
probability (its surprisal or self-information in information-
theoretic parlance). The latter prediction can be tested using
existing data sources.

Empirical validation

While it is generally agreed that more predictable words are
read more quickly, previous work on reading time and prob-
ability has suggested many functional forms for this relation-
ship: logarithmic (Hale, 2001; Levy, 2008), linear (Reichle et
al., 1998; Engbert et al., 2005), or even reciprocal (Narayanan
& Jurafsky, 2004). None have been empirically verified;
empirical work has been restricted to factorial comparisons
(Rayner & Well, 1996), which provide limited insight into
curve shape. In this section, we investigate the relationship
directly, using multiple regression techniques on an existing
database of eye movements performed during the reading of
naturalistic text.

Methods

Data The main technical challenge in measuring the shape
of a human response curve is obtaining enough data points
to estimate it reliably. Therefore, rather than attempt to con-
struct a small set of balanced stimuli, we chose to analyze the
Dundee eye-movement corpus (Kennedy et al., 2003), which
consists of all eye-movements made by 10 subjects while
reading a collection of newspaper articles totaling approxi-
mately 50,000 words. In this paper we report results for first
fixation times, a standard reading time measure correspond-
ing to the durations of the first fixation to land on each word
in the text.1 This is not a perfect measure of processing time,
and it is not a perfect match to our model (which does not
assume that during a fixation centered on some word, sub-
jects will process only that word); these facts will tend to in-
crease the noise in our data. Noise, however, can be overcome
through statistical means, and in return we are able to make
use of existing methods of word probability estimation, and
achieve greater comparability with the existing reading liter-
ature.

Probability estimation Probabilities were estimated by a
trigram language model trained on the 100 million word
British National Corpus (BNC) . We estimated the model us-
ing SRI Language Modeling Toolkit (Stolcke, 2002), with
modified Kneser-Ney smoothing (Kneser & Ney, 1995).2 A
trigram model approximates the probability of a word in con-
text P(wordi|context) as the probability of the word given two
previous words, P(wordi|wordi−1wordi−2); modified Kneser-
Ney is a standard method of smoothing these trigram proba-
bilities, and a standard technology for broad-coverage lan-
guage modeling (Chen & Goodman, 1998). However, it
should be noted that Kneser-Ney trigram probability (hence-
forth, KN3-probability) is still a very noisy estimate of true
conditional probability.

Data selection The Dundee corpus contains 307,656 first
fixations; of these, we eliminated all fixations on words that
occurred at the beginning or end of a line, which preceded or
followed punctuation, that did not occur in the BNC (i.e., un-
known words), or that occurred in the BNC but in segmented
form (e.g., the BNC codes don’t as two words, do followed by
n’t). This left N = 197,503 fixations for our analysis, spread
roughly evenly across 10 subjects (range: 16666–22390 fixa-
tions per subject).

Confounds A number of other linguistic measures are cor-
related with probability, and also known to be correlated with
reading time; in particular, these include word length and
word frequency. Since we are using naturalistic data, we must
control for such confounds retrospectively. Word length is

1Analyses of first-pass reading times led to substantially similar
results.

2Traditionally, such probabilities are estimated via a cloze norm-
ing task, but such behavioral measures are impractical for large num-
bers of data points or low probability events, both of which are major
considerations for our data-set.
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Figure 2: Scatter-plot of log frequency versus estimated log
probability for the words in our data.

simply the length of each word in letters. Word frequency
is the unconditional probability of a word, P(word), mea-
sured simply as the number of times a word appears in a large
body of text, divided by the total number of words in that
text. For each fixated word in our corpus, we calculated word
frequency from the BNC. Unsurprisingly given their closely
related theoretical definitions, frequency is highly correlated
with the conditional probability of a word (ρ = 0.80), and the
log of word frequency is reported to be correlated to process-
ing time on a wide variety of tasks. Our model, of course,
suggests that such effects are not driven by frequency per se,
but rather by probability;3 however, testing this prediction re-
quires that we analyze our data with respect to both frequency
and probability together. Distinguishing such correlated vari-
ables relies on what spread does exist; fortunately, this is non-
negligible (see Figure 2).

Analysis Analysis was carried out in R (R Develop-
ment Core Team, 2007), using the package mgcv for non-
parametric multiple regression (Wood, 2006) and lme4 for
mixed-effect linear regression (Bates & Sarkar, 2007).

Results
Curve shape Extracting the shape of an unknown func-
tional relationship from noisy data requires some form of
non-parametric regression; doing so while simultaneously
controlling for confounds requires multiple non-parametric
regression. An elegant framework for such analysis is pro-

3Note in particular that in single-word paradigms such as the lex-
ical decision task, there is effectively no context, which means that
word probability, P(word|context), and word frequency, P(word),
give identical predictions.
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Figure 3: Three possible relationships between probability
and reading time as proposed by different authors, illustrated
in log-probability space. Our model predicts that the middle
curve is correct.

vided by generalized additive models (GAMs), a spline-based
extension of the standard linear regression framework (Hastie
& Tibshirani, 1990). In our case, we fit a model of the form:4

Timei = α+β ·WordLengthi+
f (logKN3-probabilityi)+g(logFrequencyi)

where α and β are arbitrary constants, and f and g are arbi-
trary smooth functions; all are chosen by the fitting process.
Such an approach, of course, is prone to overfitting; to com-
bat this (and make the problem well-posed), the fit penalizes
functions based on how ‘wiggly’ they are, so that there is a
trade-off between following the data and avoiding extraneous
bends. The relative weight placed on these goals is deter-
mined by cross-validation.

The end result of this process are two functions, f and g
above. Plotting f will show us how fixation duration varies in
response to changes in KN3-probability, after accounting for
confounds. Above, three possibilities from the literature were
mentioned; the corresponding plots in log-space are shown in
schematic form in Figure 3.

The function g is less immediately relevant, but interest-
ing nonetheless; there is a long tradition of frequency effects
in psycholinguistics, but these results are usually confounded
with any potential effect of probability (though see Rayner et
al., 2004). Examining g will show us the residual effect of
frequency after accounting for the effects of probability.

4In this model, logs are taken of KN3-probability and frequency
purely for convenience; invertible transformations of predictor vari-
ables have a minimal effect on non-parametric regression.



One fit was performed to the data from each subject indi-
vidually, with results illustrated in Figure 4. As predicted by
our model, the curves in the left column (KN3-probability)
are very close to linear (in log space), and this pattern holds
across at least five orders of magnitude in probability. Nine
out of ten subjects show this pattern; the exception is subject
G, whose effect appears to be minimal, if any. The curves on
the right (frequency) are also roughly linear, and of a similar
order of magnitude, though they appear to be less reliable —
only seven out of ten subjects show a clear effect.

Now that we have established the shape of these effects,
we can better quantify their strength and significance using
traditional parametric techniques.

Significance To analyze significance, we used linear re-
gression of fixation duration on word length, log frequency,
and log KN3-probability, with subject as a random effect.

After controlling for word length and frequency, KN3-
probability remains highly significant (χ2(2) = 246.12, p�
0.001) as a predictor of first-fixation times. After controlling
for word length and KN3-probability, frequency also remains
significant (χ2(2) = 182.81, p� 0.001).

We can also investigate the relative magnitude and relia-
bility of these effects by fitting a model including both fre-
quency and KN3-probability simultaneously, after standard-
izing them both to ensure comparability. In such a model, the
response coefficient for KN3-probability is both larger than
that for frequency (−4.1 vs. −3.7 in arbitrary units), and less
variable across subjects (standard deviation 1.5 vs. 2.4).

Discussion
We have presented a model which predicts that in language-
like tasks — those where processing is skilled, speed is im-
portant, and stimuli are arranged through time in a continu-
ous manner with no preferred scale — the processing time for
an individual unit should be proportional to the negative log-
probability of that unit occurring. Further, we have for the
first time performed a broad-coverage analysis of the func-
tional relationship between probability and reading times, and
have found that over a wide range of probabilities, this effect
is both significant and takes the predicted form. Although we
have validated this prediction of the model on language pro-
cessing, this model could in principle apply to any cognitive
or perceptual domain in which our assumption that there is no
preferred granularity scale of processing is reasonable.

These results suggest that a substantial portion of what
have previously been understood as frequency may, in fact, be
context-sensitive probability effects — which may be prob-
lematic for theories that explain log-frequency effects as a
result of the (static, context-insensitive) structure of the lex-
icon, such as the classic logogen theory of (Morton, 1969)
and its descendants in this respect, such as READER (Just
& Carpenter, 1992). It still remains to compare to the other
covariates that have been proposed besides word frequency
(e.g., Gernsbacher, 1984; Morrison & Ellis, 1995; McDonald
& Shillcock, 2001; Murray & Forster, 2004).
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Figure 4: Estimated response curves for probability (left col-
umn) and frequency (right column), both in log space, plotted
individually by subject. The X axis in each case ranges from
−5 to the maximum value that occurred in the data set. This
range was chosen to include≈ 90% of all data points (see Fig-
ure 2); outside of this range the fit becomes extremely unre-
liable. X =−5 corresponds to a 1-in-100,000 event. Dashed
lines are bootstrapped 95% confidence intervals.



On the other hand, frequency does remain significant, and
it is not entirely clear how to interpret this. (No extant the-
ories have proposed explanations for why we would expect
probability and frequency to have separate, independent ef-
fects.) One possibility is that this result arises from noise
in the probability estimation process: trigram models have
far more parameters than unigram (word frequency) models,
which increases estimation error; furthermore, the theoreti-
cal quantity of interest is not trigram probability at all, but
‘full’ conditional probability, and this approximation intro-
duces additional error. Taken together, this means that our
probability estimates should be understood as having a much
higher degree of noise than our frequency estimates. Despite
this noise, however, KN3-probability still marginally outper-
forms frequency in explaining fixation times. This suggests
the possibility that frequency’s role could diminish or con-
ceivably disappear with improvements in our technical ability
to estimate subjective probability.

However, it is also possible that frequency’s role will not
disappear, and is in fact real. Our model makes the strong
claim that subjective probability is the only determinant of
reading time, so if frequency’s role is validated, there are two
possibilities: either our model is essentially correct but hu-
mans are sub-optimal with regards to estimating conditional
probabilities of words in text — perhaps their estimates are
partially biased and smoothed by word frequency, as a quick,
dirty, and low-variance approximation — or our model is in-
complete.

Finally, we should note that the juxtaposition of our
optimal-preparation model against optimal perceptual dis-
crimination models such as Norris’s (2006) Bayesian Reader
opens up a typology of optimal response time theories.5

Optimal-discrimination and optimal-preparation accounts
make different predictions — notably, the perceptual confus-
ability of the stimulus should have a huge effect on response
times in optimal-discrimination accounts, whereas it does not
play a role in our account. It is also logically possible that
the truth lies in a combination of both accounts, or in a third
account that lies elsewhere in this typology, in a theory of
optimal response times yet to be constructed.
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