Even more on Speech Perception: It's not just phonemes

Word Segmentation

PL Chapter 3
LDER Chapter 4

How do I find words?

iamforcedintospeechbecausemenofsciencehaverefusedtofoll owmyadvicewithoutknowingwhyitisaltogetheragainstmywillth atitellmyreasonsforopposingthiscontemplatedinvasionofthea ntarcticwithitsvastfossilhuntanditswholesaleboringandmelting oftheancienticecapsandiamthemorereluctantbecausemywarn ingmaybeinvaindoubtoftherealfactsasimustrevealthemisinevit able;yetifisuppressedwhatwillseemextravagantandincrediblet herewouldbenothingleftthehithertowithheldphotographsbotho rdinaryandaerialwillcountinmyfavorfortheyaredamnablyvivida ndgraphicstilltheywillbedoubtedbecauseofthegreatlengthstow hichcleverfakerycanbecarriedtheinkdrawingsofcoursewillbeje eredatasobviousimposturesnotwithstandingastrangenessofte chniquewhichartexpertsoughttoremarkandpuzzleover

Detecting Word Boundaries

- Infants don't know any words
- How can they be found (and then learned)?
- What information in the speech stream can a baby use to find words?

1. Frequent sounds
2. Frequently co-occurring sounds
3. Phonotactics (combinations of legal sounds in words)
4. Prosodic Patterns

Frequent Sounds

I'll give you a pot of sugar
Put some tea in the pot
His pot is full of water
Pot of tea or coffee?
Put the red pot on the table

- Infants were habituated on sentences like these
- Tested with "pot" and "car"
- Showed preference for "pot"
- Infants extracted sound pattern - despite not knowing meaning!

Frequently co-occurring sounds

- Sounds that co-occur may form words
- Transitional probabilities for syllables within words higher than for between words
- (given a syllable X , what is probability that next syllable will be Y)
- pretty baby
- Probability of -by following ba- is higher than probability of -ba following -ty
- (compare pretty doggie, pretty mommie, pretty flower, etc.)

Saffran, Aslin and Newport

- Created 3 syllable nonsense words - bidaku padoti golabu tupiro
- Strung them together in two minute block
- bidakupadotigolabubidakutupiropadoti...
- Words were arranged in random order - (transition probability between words is lower than within words)
- Tested for infants' listening preference for words (tupiro) vs. non-words (dapiku)
- Infants (8 months) preferred words to nonwords

Phonotactics

- Certain sequences of phonemes are not legal within a word, or at the beginning or end of a word
- "tb" is not legal at the start of an English word
- Possible word boundary between /t/ and /b/?
- "sp" is legal at start of English word (special) and middle (especial) and end (lisp)
- "sp" is not legal at start of Spanish word
- Phonotactic cues are language specific

Prosodic Patterns

- Certain patterns are legal both within and across words
- -rimen-
- experimental vs. very menacing
- Subtle differences in prosody between the two
- Infants can detect the differences between
- -rimen-
- -ry_men-
- Infants are also sensitive to stress patterns
- 6-9 month old (English-learning) infants prefer the typical strong-weak stress pattern (TAble, CARpet)
- 10-11 month old infants can identify weak-strong pattern found less typically (girAFFE)

Learning the form of language

- Using Artificial Languages
- Real language is really complex!
- We don't fully understand it
- We don't know exactly what input the infant was exposed to
- Meaning can't easily be separated from grammar
- With Artificial languages
- We control the input
- We know exactly what the infant was exposed to
- We can examine grammar separately from meaning
- Can infants start to learn grammar based just on form (before they learn what words mean)?

What is grammar?

- A system for generating an infinite number of phrases and sentences from a finite set of words
- The grammar of a language enables you to describe which combinations of words belong to the language (are 'grammatical') and which don't.
- A good theory of grammar enables a simple, elegant description of how such phrases and sentences can be produced

Precedence

- What order do words go in?
- big red apple
- *red big apple
- What order do constituents go in?
- SVO in English
- SOV in Japanese; SVO and SOV in German

Dominance

- Language structures are hierarchical
- High vs. low attachment
- I saw the robber with binoculars
- Who has binoculars? (me or the robber?)
- And recursive
- I saw the robber who saw the burglar with binoculars
- Who has binoculars? (me, robber, burglar?)

If language were finite

- Finite state grammars would be fine
- For a finite language, it would be possible to simply list the sentences of the language
- A finite state grammar could easily capture that list - but it would be uselessly complex

Simple Grammars

- Finite state grammars
- Simplest grammar that can produce (infinite) recursive sequences of linguistic elements
- Sequential transition probabilities between successive nodes ("states")
- Not adequate for real languages!

- ART N N V ART NPN
- NPNVNPARTN
- etc.

Assume language is infinite

- Language description gets simpler (generalize across sentences)
- The man comes
- The men come
- Add loops
- The old man comes
- The old old man comes
- The old men come
- The old old old men come
- etc.

Even loops fail...

- Finite state grammars (FSG) fail on two counts:
- Cannot produce all and only the grammatical sentences of a recursively structured language

1) If an FSG produces all grammatical sentences in a language, it will also produce many ungrammatical ones ("over-generation")
2) If an FSG is restricted so that it doesn't overgenerate, it will fail to produce many grammatical sentences ("under-generation")

What can't FSGs handle?

- The distinctions between
- If (sentence), then (sentence).
- *If (sentence), or (sentence).
- Either (sentence), or (sentence)
- *Either (sentence), then (sentence)
- If, either (sentence), or (sentence), then (sentence)
- *If, either (sentence), then (sentence), or (sentence)
- Long distance (and nested) dependencies

More complex Grammars

- Need a grammar for
- Recursion
- infinitely long sentences
- long-distance (and nested) dependencies
- Phrase structure grammars
- A superset of finite state grammars

Creating longer sentences

Creating longer sentences		
$(\mathrm{ab})^{\mathrm{n}}$	$\mathrm{n}=$	$(\mathrm{a})^{\mathrm{n}}(\mathrm{b})^{\mathrm{n}}$
ab	1	ab
abab ababab abababab	2	aabb
	3	aaabbb
aaaabbbb		

Comparing Grammars

- Finite State
- Phrase Structure

$Z \rightarrow a b$
$Z \rightarrow a Z b$
New elements are appended
New elements are inserted

Can be rewritten as: Can be rewritten as:
$(a b)^{n}$
(a) ${ }^{n}(b)^{n}$

Can't finite state grammars do it?

- Phrase structure grammar can easily be written to produce just $(a b)^{n}$ sequences:

$$
\begin{aligned}
& Z \rightarrow a b \\
& Z \rightarrow a b Z
\end{aligned}
$$

- Finite state grammar cannot produce just the nested sequence (unless all nestings were listed - a very bad solution!)

How does this grammar produce
aaabbb but not aaabbb but not abbbbb?

Can college students learn grammars?

- Fitch and Hauser, 2004
- Created two grammars of CV syllables
- Finite state grammar (AB) ${ }^{n}$
- Phrase structure grammar $A^{n} B^{n}$
- $A=\{b a, ~ d i, y o, ~ t u, ~ l a, ~ m i, ~ n o, ~ w u\} ~$
- $B=\{p a, ~ l i, ~ m o, ~ n u, ~ k a, ~ b i, ~ d o ~, ~ g u\} ~$
- 'A' syllables spoken by female voice
- 'B' syllables spoken by male voice
- n is restricted to be 2 or 3 , to avoid processing limitations

How did the students do?

- Listened to sequences of syllables that conformed to the grammar (implicit learning; 3 minutes)
- Tested with novel sequences that either conformed to the grammar or didn't

Monkey sequence, monkey do(n't)

- Fitch and Hauser, 2004
- Cotton top tamarin monkeys tested with same FSG, PSG used with college students

What about infants?

- Gary Marcus and colleagues
- Infants (7 months old) trained on:
- ABA patterns (wi-di-wi; de-li-de)
- ABB patterns ((wi-di-di; de-li-li)
- Infants were tested on (violation detection)
- same patterns with different syllables (ba-po-ba; ba-po-po)
- Infants were able to distinguish grammatical from ungrammatical strings, even though all test patterns were new to them
- Did infants learn an abstract grammatical rule?

A limitation?

- Are these syllables the same as language?
- ABA = Noun Verb Noun?
- ba-po-ba
($1^{\text {st }}$ and $3^{\text {rd }}$ elements perceptually identical)
■ Dogs eat pizza ($1^{\text {st }}$ and $3^{\text {rd }}$ elements categorically identical)
■ John loves books (1st and $3^{\text {rd }}$ elements categorically identical)
- Maybe the syllables are too simple?

What about words?

- At 12 months, babies just beginning to speak
- At ~ 18 months, vocabulary burst
- By 24 months, infants can produce 200500 words
- But this focuses on what babies say, not what they understand!

How to measure?

- How can we measure what words a baby knows?
- Ask parents
- Ask child to choose a named object from several options
- Methods for measuring adult understanding of words much better - can we use them with infants?

Summary

- Infants gain productive vocabulary quickly towards end of second year
- Infants also get much faster at understanding words they hear!
- Next week we'll start to look at meaning...

