

http://ling.ucsd.edu/courses/lign171

More on Speech Perception

Phoneme Discrimination

LDER Chapter 2

What is a phoneme?

- Smallest unit of language that signals a change in meaning
 - "pat" vs "bat"
- An abstract representation of actual sounds (phones)
 - Different instantiations of a phoneme are allophones
 e.g., "water" -- [t], [?], or [f]

Adults discriminate sounds in their language

The question:

- Infants distinguish minimally different phonemes
 - Even those not found in their native language
- Adults do not appear able to distinguish minimally different phonemes that are not in their native language
 - But adults are usually better than infants at tasks!
- What is responsible for this change from infant perception to adult perception?

How can we examine this?

- Need a procedure that is adaptable for both infants and adults!
 - Adults are not so good at sucking
 - Infants can't push buttons
- - Press a button whenever you hear target: /da/
 - For infants
 - Conditioned head turning paradigm

What did they test? First Contrast Hindi /Ta/ vs. /ta/ /Ta/ has retroflex stop (ta/ has a dental one)

- Both sound like /ta/ to English speakers
- English /t/ is alveolar

Who did they test?

- English learning infants (aged 6-8 months)
- English speaking adults
- Hindi speaking adults
- Is this sufficient?
- Why not test Hindi-learning infants?

Results

- All three groups could discriminate /ba/ from /da/
- English learning infants and Hindi speaking adults could discriminate the two contrasts found in Hindi but not English
- English speaking adults had trouble with the two Hindi contrasts
 - After training, improved on voicing contrast but not retroflex/dental contrast

When do infants grow up?

- At what age does this change?
 - "Critical Period Hypothesis"?
 - Much earlier!
 - English speaking children aged 12, 8 and even 4 showed same pattern as English speaking adults
 - Hindi children aged 4 could discriminate Hindi contrasts when tested with the same paradigm

Between 6 and 12 months

- English learning infants could discriminate both contrasts
 - At 6-8 months old
 - But not at 10-12 months old
- What about Hindi and Nthlakampx infants?
 11-12 month old infants in both groups could distinguish contrasts in their native language
- Perceptual loss not just an aging effect
- Reflects language-specific experience!

Infant Categorical Perception

- Create continuum of sounds (artificially) that varies between
 - Bilabial /ba/ dental /da/ retroflex /Da/
 - English learning infants aged 6-8 months
 - Distinguished proper boundaries between
 /ba/ and /da/; /da/ and /Da/
 - English learning infants aged 10-12 months
 Distinguished boundaries between
 - /ba/ and /da/ but NOT between /da/ and /Da/

What's the explanation?

- Maintenance/Loss
 - Only phonemic contrasts present in the native language will be maintained, others are lost permanently
 - Loss may reflect developmental changes in the brain
 - Maybe this is too strong...

Do adults remember anything?

- Perceptual Assimilation Model
 - Non-native contrasts that assimilate into a single native category are lost
 - Hindi /t/ and /T/ both map to English /t/
 - Non-native contrasts that don't assimilate well into a native category may be easier to discriminate
 - Non-native contrasts that are not remotely close to native categories should be well discriminated

Zulu clicks Image: Additional content of the second of

necessarily brain-specific changes

What about vowels?

- In German contrast between:
 - /but/ and /büt/
 - (high back rounded vs. high front rounded)
 - Adults make this discrimination easily
 - For infants, experience seems to play a role earlier for vowels than for consonants
 - 6-8 month old infants discriminate the vowels, but not as well as they discriminate non-native consonant contrasts
- Vowels may be somewhat different than consonants

Summary

- Within the first year of life infants
 - are learning the phonemes of their language
 - grouping them into categories
 grouping phone into phonemes
 - become less well able to discriminate nonnative phonemic contrasts
 - For consonants when non-native sounds are similar to native ones
 - For vowels at a slightly earlier age

Language Discrimination

LDER Chapter 3

What's special about babies?

Is there a difference?

Human infants

- Discriminate phonemes categorically
- Are sensitive to the rhythm of speech
- Process natural speech differently than backwards speech
- Other species
 - insects, birds, primates, mammals
 - Perceive their own species-typical sounds categorically
 - Some also perceive human speech categorically

How to test for a difference?

- Same problem as for testing infants vs adults, but worse
- Need a paradigm that is comparable for both babies and monkeys
 - Babies: high-amplitude sucking
 - Monkeys: head-orientation response (similar to conditioned head turn paradigm)

Language Discrimination Task

- Tested Japanese vs Dutch sentences
- Test sentences were read by 4 native (adult female) speakers of each language
- Contrasted
 - Language: Japanese vs Dutch
 - Speaker: within each language
 - Forwards vs. backwards speech

Human Infants

- High-amplitude sucking procedure
- Native French speaking infants
 - Language change
 - Habituate to 2 speakers of one language (Japanese or Dutch)
 - Switch to 2 speakers of the other language
 - Speaker change
 - Habituate to 2 speakers of one language
 - Switch to the other 2 speakers of the same language
- Greater increase in sucking for language change than speaker change indicates newborns distinguish the two languages

Human Results

- The infants did not discriminate the two languages...
 - But, shouldn't they have?
 - Yes, but...
 - Speaker variability seems to impair language discrimination ability of infants (this susceptibility goes away after a few months)
- With only a single (synthesized) voice
 - Preserves prosody; removes some phonetic detail
 - Infants did discriminate the two languages!
 - But only forwards, not backwards
 Backwards speech may eliminate cues not
 - Backwards speech may eliminate cues necessary to distinguish the two languages

Cotton Top Tamarins

- Head orientation response
- Native Cotton-Top speaking Cotton-Tops
- Tested initially on their own species specific vocalizations, to ensure that test procedure worked
- Tested on same language stimuli as human infants
- Habituation recovery of head orientation to loudspeaker indicative of detection of difference

Monkey Results

- With natural speech
 - Tamarins dishabituated in the
 language change condition
 - more than in the speaker change condition
- With synthesized speech
 - Tamarins did not dishabituate more for language change than speaker change
 - But only for forwards speech!
 - Language change not detected with backwards speech

Summary

- Both human infants and cotton-top tamarins could distinguish Japanese and Dutch
- Speaker variability problematic for young infants but not cotton-top tamarins
 - Monkeys able to extract abstract linguistic information from a variable natural signal (babies catch up)
 - Monkeys handled synthetic speech less well than human infants (tamarins more sensitive to phonetic than prosodic contrasts?)
- Inability to distinguish languages when played backwards same for humans and monkeys
 - Suggests sensitivity to important aspects of speech
 - Low level details similar forwards and backwards

