Phonemic Analysis Example

1.	[esféra]	'sphere'
2.	[kása]	'houses'
3.	[asus <u>t</u> ár]	'frighten'
4.	[péska]	's/he fishes'
5.	[rúsos]	'Russians'
6.	[lósas]	'tiles'
7.	[svéño]	'dream'
8.	[asvé <u>t</u> o]	'vacation'
9.	[ízla]	'island'
10.	[ezβé <u>lt</u> o]	'slender'
11.	[dézðe]	'since'
12.	[sésos]	'brains'
13.	[eleksjón]	'election'
14.	[píso]	'apartment'
15.	[kási]	'almost'
16.	[késo]	'cheese'
17.	[desjérto]	'desert'
18.	[sjérto]	'certain'
19.	[mízmo]	'same'
20.	[áznos]	'asses'
21.	[rázyo]	'feature'

1. Tabulate the environments

$$\begin{bmatrix} s \end{bmatrix} e_f (1) & o_a (6) & a_i (15) \\ a_a (2) & a_\# (6) & e_o (16) \\ a_u (3) & \#_v (7) & e_j (17) \\ u_t (3) & a_v (8) & \#_j (18) \\ e_k (4) & \#_e (12) \\ u_o (5) & k_j (13) \\ o_\# (5,12) & i_o (14) \end{bmatrix}$$

e_	_β	(10)
e_	_ð	(11)
i	_m	(19)
a_	_n	(20)
a_	_γ	(21)

2. Look for patterns

3. Formulate competing hypotheses

Hypothesis A: $/s/ \rightarrow [z] / _C_{voiced}$ (except glides)

Hypothesis B: $/z/ \rightarrow [s] / \{ C_{voiceless}, V, \#, Glide \}$

Hypothesis A is simpler, hence preferred

4. Look at syllable structure

The 'except glides' part of hypothesis A is inelegant. We see, however, that when [s] is followed by a glide, the glide and [s] are part of the same syllable:

[své . ño] [a . své . to] [e . lek . sjón] [sjér . to]

On the other hand, we find that [z] is always at the end of a syllable:

 $\begin{array}{l} [iz . la] \\ [ez . \beta \acute{e}] . to] \\ [d\acute{e}z . \delta e] \end{array}$

Thus, hypothesis A can be reformulated:

Hypothesis A': $/s/ \rightarrow [z] / _$. C_{voiced}

5. Conclusion

The phoneme is /s/, with two allophones: [s] and [z]; their distribution is governed by the rule in hypothesis A'.