Phonemic Analysis Example

1. [esféra] 'sphere'
2. [kása] 'houses'
3. [asustár] 'frighten'
4. [péska] 's/he fishes'
5. [rúsos] 'Russians'
6. [lósas] 'tiles'
7. [suéño] 'dream'
8. [asuéto] 'vacation'
9. [ízla] 'island'
10. [ezßélto] 'slender'
11. [dézðe] 'since'
12. [sésos] 'brains'
13. [eleksjón] 'election'
14. [píso] 'apartment'
15. [kási] 'almost'
16. [késo] 'cheese'
17. [desjérto] 'desert'
18. [sjérto] 'certain'
19. [mízmo] 'same'
20. [áznos] 'asses’
21. [ráz $\boldsymbol{\gamma}_{\mathrm{o}}$] 'feature'

1. Tabulate the environments

e_ff	(1)
a__a	(2)
a__u	(3)
u_t	(3)
e_f	(4)
u__o	(5)
o_\#	$(5,12)$

a	(6)
a-\#	(6)
\#__ ${ }^{\text {d }}$	(7)
a__u	(8)
\#_e	(12)
k_j	(13)
i__o	(14)

a_i	(15)
e_o.	(16)
e_j	(17)
\#_j	(18)

$\begin{array}{rll}{[\mathrm{z}]} & \mathrm{i} _1 & (9) \\ & \mathrm{e}-\beta & (10) \\ & \mathrm{e} _\delta & (11) \\ & \mathrm{i} _\mathrm{m} & (19) \\ & \mathrm{a} _\mathrm{n} & (20) \\ & \mathrm{a} _\gamma & (21)\end{array}$

2. Look for patterns

[s] V__C (1,3,4)
[z] V_C ${ }_{\text {voiced }}$ (except glides) $(9,10,11,19,20,21)$

V-V
V \#
\#__V
Glide
3. Formulate competing hypotheses

Hypothesis A: $\quad / \mathrm{s} / \rightarrow[\mathrm{z}] / \ldots \mathrm{C}_{\text {voiced }}$ (except glides)

Hypothesis B: $\quad / \mathrm{z} / \rightarrow[\mathrm{s}] /\left\{\ldots \mathrm{C}_{\mathrm{voiceless}}, \ldots \mathrm{V}, \ldots\right.$, __Glide $\}$
Hypothesis A is simpler, hence preferred

4. Look at syllable structure

The 'except glides' part of hypothesis A is inelegant. We see, however, that when [s] is followed by a glide, the glide and [s] are part of the same syllable:
[sué . ño]
[a. sué . to]
[e. lek. sjón]
[sjér . to]
On the other hand, we find that $[z]$ is always at the end of a syllable:
[íz. la]
[ez. β én. .to]
[d̃éz. ðe]
Thus, hypothesis A can be reformulated:
Hypothesis $\mathrm{A}^{\prime}: \quad / \mathrm{s} / \rightarrow[\mathrm{z}] / \ldots$. $\mathrm{C}_{\mathrm{voice}}$

5. Conclusion

The phoneme is /s/, with two allophones: [s] and [z]; their distribution is governed by the rule in hypothesis A^{\prime}.

