3 main types of morphological relations, again

- Inflection, derivation, and compounding
- Inflectional morphology modifies properties of LEXEMES, while maintaining the basic meaning of the Lexeme.

$$
\begin{array}{ll}
\text { mor-iksel'-i-ńn } & \text { mor-iksel'-i-t' } \\
\text { sing-DES-PAST-ISG } & \text { sing-DES-PAST-2SG } \\
\text { 'I wanted to sing' } & \text { 'you wanted to sing' }
\end{array}
$$

Inflection

- There is a theoretical tendency to distinguish between derivation and inflection, but what's really the difference?
- Linguists have identified a number of criteria, but none are definitional

Prototypical differences between inflection and derivation

Derivation
I. Encodes lexical meaning
2. Not syntactically relevant
3. Occurs close to the root \& inside other derivation
4. Often changes lexical category
5. Often semantically opaque
6. Often shows restricted productivity
7. Optional

Inflection
Encodes grammatical meaning
Syntactically relevant
Occurs outside all derivation

Does not change lexical category
Usually semantically obvious
Fully productive

Obligatory

Recursion

- Derivational operations are recursive i.e., the property whereby a single element can appear again and again with additional effect on a structure, but not inflectional ones:
- What's the longest English word?
antidisestablishmentarianism antidisestablishmentarianistic antidisestablishmentarianistically anti-antidisestablishmentarianistically anti-antidisestablishmentarianisticality pseudo-anti-antidisestablishmentarianisticality
- Repeated morphs:

English: industrializational
German: Einheitlichkeit 'unitarity'
Dutch: kleurloosheidloos 'without colorlessness'

Order

- Derivational rules can apply in more than one order
idealistic
semanticist
- Inflectional rules have a fixed order

$$
\begin{array}{ll}
\text { German: } & \text { lieb }+ \text { te }+\mathrm{t} \quad \text { love }+ \text { PAST }+2 . \text { PL }^{\prime} \\
\text { Basque: } & \mathrm{z} \text {-inez }+ \text { te }+\mathrm{n} \text { be }+2 . \mathrm{PL}+\mathrm{PAST}^{\prime}
\end{array}
$$

- Order varies between languages, but there are strong crosslinguistic tendencies for invariable ordering.

Inherent versus Contextual Inflection

- Templatic (position class) morpology

Bemba (Bantu):
Negation - Subject - Tense - Aspect - Object - Stem - Final V
ta- tu- aku- laa- ba- bombel- a

NEG I.PL FUT- PROG- 3.PL- work
'We will not be working for them’

- Inherent: a morphosyntactic category not required by the syntactic combination of words - choice of the speaker
- Contextual: a morphosyntactic category that reflects syntactic combination with another element - obligatory relative to context.

Syntagmatic and Paradigmatic, again

- A syntagmatic perspective aims to get the structures of words with the same morphosyntactic feature values right
- Constructs complex words from small, meaningful bits
- Avoidance of redundancy, so that complex, productive and semantically transparent words are not stored in the morphological component, but are produced by applying the right rules and the appropriate times.

Syntagmatic and Paradigmatic, again

Infinitive: parl-a-re ':o speak'

	present indicative	present subjunctive			imperfect indicative	
	Sg. P.	Sg.	P!.		Sg.	PI.
1	pa:1-o parl-iamo	parl-i	parl-iamo		parl-a-v-o	parl-a-va-m:o
2	parl-i parl-a-te	parl-i	parl-i-ate	2	parl-a-v-i	parl-a-va-te
3	parl-a parl-a-ro	parl-i	parl-i-no	3	parl-a-v-a	parl-a-va-no

Root - Position I- Position 2 - Position 3

a	va	o
i	\varnothing	i
		\varnothing
		mo, iamo
		te
	no	

What's missing in a solely syntagmatic approach

- Even though wordforms are arrayed into paradigms, the paradigms have no theoretical status, they're just (pedagogically) convenient displays, i.e., epiphenomenal w/ the primary phenomenon being the construction of (classes of) individual wordforms, rather than relatedness between them.
- Apply rules to roots/stems to create individual words:

Lexicon: parl `speak’; o `iSG’ [V + TNS \qquad

- There are no representations of whole words, let alone, newtorks of related words.

A theoretical role for paradigms?

- Without paradigm organization,
"it would be impossible to learn and memorize such huge amounts of data. Besides, if there are more moods, more voices, and distinct subject-object marking for combinations of persons in the transitive verb, the complexity of data increases accordingly." Itkonen 2005:84
- A typical transitive verb in Georgian has upwards of 200 forms, whose inflectional patterns identify the verb as belonging to one of four major conjugation classes (Tschenkéli 1958). Even Georgian is relatively conservative in comparison with descriptions of verb paradigms in Archi, which, according to one estimate (Kibrik I998: 467), may contain 'more than one and a half million' members.

The Paradigm Cell Filling Problem

(Pauonen 1976; Thymé 1994, Thymé, Ackerman \& Elman 1994, Pirrelli 2000, among others in WP tradition)

- Paradigm Cell Filling Problem: Given exposure to a novel inflected wordform, what licenses reliable inferences about the all the other wordforms in its inflectional family?
- Speakers of languages with complex morphology and multiple inflection classes must generalize beyond direct experience, since it's implausible to assume they will have encountered each form of every noun.

The Paradigm Cell Filling Problem

- The analogical task of predicting or inferring the correct shapes of words on the basis of limited experience with "similar" patterns of words becomes increasingly crucial as languages depart from the simple content/form mappings associated with what Lounsbury (1953) refers to as the "fictive agglutinative ideal" (morpheme-based) which serves as the basis for most familiar approaches to morphology.
- Word-based proposals offer a simple solution: paradigms are networks of implicative relations among related wordforms and inflectional classes are patterns of wordforms displaying distinctive implicational relations.

Finnish

(following the classification in Pihel \& Pikamäe 1999:758-771) ${ }^{\text { }}$

Nom Sg	Gen Sg	Part Sg	Part PI	Iness PI	
ovi	oven	ovea	ovia	ovissa	'door' (8)
kieli	kielen	kieltä	kieliä	kielissä	'language' (32)
vesi	veden	vettä	vesiä	vesissä	'water' (I0)
lasi	lasin	lasia	laseja	laseissa	'glass' (4)
nalle	nallen	nallea	nalleja	nalleissa	'teddy' (9)
kirje	kirjeen	kirjettä	kirjeitä	kirjeissä	'letter' (78)

- To confidently deduce the Finnish nominative for rasti 'checkpoint' it is enough to know the partitive singular rastia on analogy with what occurs with lasi 'cup'; less confidence resides in knowing the partitive plural rastejä, since this restricts class membership to either 4 or 9. ${ }^{2}$
I. There are numerous phonological and morphological cues that lead to fairly deterministic identification of class membership, i.e., nominals that end -aus, e.g., kiusaus 'temptation' or C-us, e.g., kuljetus 'carrying' are class 64, while those ending -eus, e.g., korkeus 'height' or -uus, e.g., lujuus 'firmness' are class 65 , but their plural partitive and inessive and one allomorph of the genitive are nondiagnostic.

2. It also helps to know thaat lasi is a loan word and that class 4 is a basin for such words.

Deduction and Induction

(following discussion in Itkonen 2005)

- Deduction: Reasoning from general laws, where the major premise contains all the conclusions:

Assume that for all X if X is an apple, then X is edible, the if we encounter a new apple, we know, by the logic of deduction that that apple is edible.

- Induction: Reasoning toward a generalization on the basis of multiple examples:

Assume that X is an apple and is edible; assume that Y is an apple and edible, then one can posit that if any X is an apple, it is edible.

Abduction and Analogy

(following discussion in Itkonen 2005)

- Abduction of theory T from observation OI:

I OI
$2 \mathrm{~T} \vdash$ OI
3 T

- Confirmation of theory T via prediction of observation O_{2} :

I $\mathrm{T} \vdash \mathrm{O}_{2}$ [new prediction]
$2 \mathrm{O}_{2}$ [true prediction]
3 T

- "The idea is that if, confronted by some phenomenon, you find one explanation (perhaps with some initial plausibility) that makes sense of what is otherwise inexplicable ($=\mathrm{T} \vdash \mathrm{OI}$), then you should conclude that the explanation is probably right." Hacking i983:52 cited in Itkonen 2005:30)

Abduction and Analogy

(following discussion in Itkonen 2005)

- Abductive analogical inference

I $\mathrm{OI}_{\mathrm{I}} \& \mathrm{O}_{2}$
$2^{\mathrm{T}} \vdash \mathrm{OI}_{\mathrm{I}} \sim \mathrm{O}_{2}$
3 T

- Learning a grammatical rule: where ~ = exemplifications of common structure, rather than two independent phenomena
I dog/dogs \& cat/cats
$2(\mathrm{~N} \rightarrow \mathrm{~N}-\mathrm{s}) \vdash \operatorname{dog} / \operatorname{dog} s \sim$ cat/cats
3 ($\mathrm{N} \rightarrow \mathrm{N}-\mathrm{s}$)
- Applying a grammatical rule to new data

I ($\mathrm{N} \rightarrow \mathbf{N}$-s)
2 horse
3 horse-s

Periphrasis and inflectional paradigms

- So far, the morphosyntactic information associated with cells have only been occupied by synthetic wordforms/
- Can the occupants of cells be periphrastic expressions?
- If so, then morphology must deal with synthetic and periphrastic expressions: this brings us back to the question concerning what a word is:
Synthesis Clisis Independent elements

Bulgarian verbal morphology

(From Stump 200I:37)
Feature: grammatical attribute such as PERSON,NUMBER, TENSE...

Value: a specification of an attribute such as 2 ND ,
SINGULAR, PAST...
Property: a feature-value pairing such as 2 ND PERSON, PAST TENSE...

Property bundle: a set of grammatical properties such as \{2ND PERSON; PAST TENSE; PASSIVE VOICE $\}$

Bulgarian verbal morphology

(From Stump 200I:39)

- The inflected wordforms of 4 LEXEMES.
- LEXEME: The abstract element common among related elements.
- Morphosyntactic/ Grammatical word: The meaning associated with the lexeme (lexical) and the morphosyntactic properties (grammatical).
- Wordform: The formal realization or exponence of the grammatical word.

Table 2.2 Indicative paradigms of four imperfective verbs in Bulgarian (Scatton I984:2IIff.)

		KRAD 'steal'	IGRAJ 'play'	KOVA 'forge'	DAVA 'give'
Conjugation:		$-\mathrm{T},+\mathrm{C}$	$+\mathrm{T},+\mathrm{C}$	$+\mathrm{T},-\mathrm{C}$	-T, - C
Present	ISG	krad-á	igrajj-o	kov-ó	dìva-m
	2SG	krad-é-s	igráa-e-s	kov-ć-s	dàvas
	$3^{5 G G}$	krad-ei	igrá-e	kov-e	dàva
	IPL	krad-é-m	igrai-c-m	kov-e-m	dàva-me
	2PL	krad-e-te	igráe-te	kov-é-te	dȧva-te
	$3^{P L}$	krad-ذ̀t	igráj-al	kov-jt	dàva-t
Imperfect	ISG	krad-'á-x	$i g r \dot{a}-e-x$	$\text { kov- } \dot{a}-x$	däva-x
	2SG	krad-ci-š-c	$i g r \dot{a}-c-s ̌-e$	$\text { kov- } \dot{e}-s{ }_{s}-c$	dávu-š-e
	3 SG	krad-è-sj-e	igrà-e-s゙-e	kov-es-s-e	dȧvel-še
	IPL	krad-'à-x-me	igríe-x-me	kov-'á-x-me	dàva-x-me
	2PL	krad- ${ }^{-1}-x-1 e$	igrá-c-x-le	kov-'aj-x-tc	dáva-x-te
	$3^{\text {PI }}$	krah-'i-r-a	igrá-c-x-a	kov-' ${ }^{\text {- }}$ - $\boldsymbol{x}-\mathrm{a}$	dàva-x -
AORIST	ISG	krád-o-x	igrá-x	kovir-x	dáva-x. davá-x
	2SG	krád-e	igrá	ková	dȧva, dava
	3 SG	krád-e	igrá	ková	dàva, davá
	IPI.	krád-o-x-me	igrá-x-me	kovȧ-x-me	dảva-x'me, davai-x-me
	2PL	krád-o-x-te	igrá-x-te	kovȧ-x-te	dáva-x-te, davá-x-te
	3 PL	krád-o-x-a	igrá-x-a	ková-ı-a	dáva-x-a, davá-x-a

Syntagmatic \& Paradigmatic

(image from Stump 200I:39)

- Syntagmatic: The linear arrangement of elements (morphotactics)
- Paradigm: The set of wordforms sharing the same lexeme; The abstracted schema for wordforms sharing the same lexeme; the selection of one wordform excludes the selection of another wordform for the relevant property set.
- Syncretism: Identity in wordform, but difference in property set.

Table 2.2 Indicative paradigms of four imperfective verbs in Bulgarian (Scatton I984:2IIff.)

		KRad 'steal'	IGRAJ 'play ${ }^{\text {P }}$	KOVA 'forge'	DAVA give'
Conjugation:		$-\mathrm{T},+\mathrm{C}$	$+\mathrm{T},+\mathrm{C}$	$+\mathrm{T},-\mathrm{C}$	-T,-C
Presen:	ISG	krad-ó	igráj-o	kow-ó	diava-m
	2SG	krad-é-s	igrȧ-c-s	kov-ć-s	däva-s
	3 SG	krad-é	igrà-e	kov-e	dáva
	IPL	krad-é-m	igrà-c-m	kov-ém	dảva-me
	2 PL	krad-é-te	igrá-e-te	kov-e.te	dáva-te
	$3^{\text {PL }}$	krad-òt	igráj-al	kov-jt	dà ${ }^{\text {a }}$ (at
Imperfact	ISG	krad-'á-x	igràe-e-x	kov- $\cos ^{-x}$	dảva-x
	2 SG	krad- $\dot{c}-5$ - $-c$	igrá-c-š-e	kov-é-še	dàva-še
	3 SG	krad-è-j-c	igrà-c-s̆-e	kov-ė-s-e	däva-še
	IPL	krad-'ă-x-me	igrá-e-x-me	kov-'̆̇-x-me	dàva-x-me
	2 PL			$\text { kov-' } \dot{a}-x-t c$	dáva-x-te
	$3^{\text {PI }}$	krad-'tr-v-a	igrá-c-x-a	kov-' $\mathrm{a}^{\text {- }}$ - $-a$	
Aorist	ISG	krád-o-x	igrá-x	kovior	dâva-x. davá-x
	2SG	krád-e	igrá	ková	däva, davà
	3 SG	krảd-e	igrá	ková	dáva, davá
	IPI.	krád-o-x-me	igrà-x-me	kovȧ-x-me	dáva-x-me, davá-x-me
	2PL	krád-o-x-te	igrà-x-te	kovȧ-x-te	dáva-x-te, davá-x-te
	3 PL	kräd-o-x-a	igrá-x-a	ková-.t-a	dàva-x-a, davá-x-a

Periphrasis and inflectional paradigms

$\left.\begin{array}{lll}\text { (8a) } & \text { (8b) }\end{array}\right]$| TENSE: PRESENT | AORIST |
| :--- | :--- |
| affirmative | |

(12a) TENSE: FUTURE PERFECT POL affirmative

1.	2.
1SG šte săm pisal	šte băda pisal
,I will have written	,I will have writte
2SG šte si pisal	šte bădeš pisal
3SG šte e pisal	šte băde pisal
1PL šte sme pisali	šte bădem pisali
2PL šte ste pisali	šte bădete pisali
3PL šte sa pisali	šte bădat pisali

(12b)
POL negative

1. 2

1SG ne šte săm pisal ,I won't have written" 2SG ne šte si pisal 3SG ne šte e pisal 1PL ne šte sme pisali 2PL ne šte ste pisali 3PL ne šte sa pisali
njama da săm pisal ,I won 't have written" njama da si pisal njama dae pisal njama da sme pisali najma da ste pisali njama da sa pisali
3.
ne šte băda pisal ,I won't have written' ne šte bădeš pisal ne šte băde pisal ne šte bădem pisali ne šte bădete pisali ne šte bădat pisali
4.
njama da băda pisal ,I won't have written' njama da bădeš pisal njama da băde pisal njama da bădem pisali njama da bădete pisali njama da bădat pisali

Composing wholes from pieces doesn't always work Udmurt imperfective past tense

sg.	1	mïno 'I will go'
	2	mïnod
	3	mïnoz
pl.	1	mïnom(ī)
	2	mïnodi
	3	mïnozì

TABLE 4. Affirmative future-tense realizations of Udmurt miNi 'go' [data from Csúcs (1988:142)]

Realized by the periphrastic combination of a future-tense form (inflected for subject agreement) with the invariant past form val of the copula

sg.	1	mïno val 'I used to go (long ago)'
	2	miñod val
	3	miñoz val
pl.	1	minom(i) val
	2	minodì val
	3	minnozíval

TABLE 3. Affirmative imperfective past-tense realizations of Udmurt mINI 'go'
[data from Suihkonen 1995:30222]

Inflection: Distributed exponence

Hungarian: Ackerman 1987 (from Kálmán et. al. 1984)

Inflection: Periphrasis in paradigms

Table 20. Declension of $t i$ `reindeer' in Tundra Nenets
(Data from Salminen 1997)

		Singular	Dual	Plural
Grammatical cases	Nominative	$t i$	tex. h	tiq
	Accusative	tim	tex\% ${ }^{\text {a }}$	tí
	Genitive	tih	tex\%	tíq
Local cases	Dative	ten ${ }^{\circ}$	tex\% n nyah	tex ${ }^{\circ}$
	Locative	tex ${ }^{\circ} \mathrm{a}$	tex $\%$ nyana	tex ${ }^{\text {q }}$ a
	Ablative	texpd ${ }^{\circ}$	tex ${ }^{\text {h }}$ nyad ${ }^{\text {o }}$	texøt ${ }^{\circ}$
	Prosecutive	tew ${ }^{\circ} \mathrm{na}$	tex\% h nyamna	teqmo$n a$

- Note the relation between morphosyntactic markedness and surface realization:the most marked morphosyntactic values for the number and case categories, i.e., dual and local cases, are expressed periphrastically.
- If periphrasis were not a possible form of expression within morphological paradigms, how would this evident relation between content and form be captured transparently and simply?

Numeral classifiers in Malto (North Dravidian)

TABLE 1. Malto numeral classifiers

Classifier	Reference of associated noun class	Examples
jen	humans	tini jen maler 'three men' tini jen qalwer "three thieves"
$m a q$	animate nonhumans	tmi maq goro 'three horses' tini maq pujdu 'three birds' tini maq büte 'three ghosts'
dara	long. large objects	tini dara qeddu 'three legs' tini dara nadi 'three rivers'
kati	long, small objects	tīni kati tāli 'three hairs' tini kati cabi 'three keys'
panda	long, flexible objects	tini panda dawra three ropes tmi panda pawdu 'three roads'
para	long pods/fruits	tīni para kaldi 'three bananas' tini para simbi 'three string beans'
pata	flat, broad objects	tini pata badli 'three clouds' tini pata tarte 'three tongues'
pata	flat, broad, thin objects	tini pata ātye 'three leaves' tini pata citi 'three letters'
kanda	flat, broad, cotton objects	tini kanda komle 'three blankets' tini kanda moja 'three socks'
got	round, heavy objects and miscellaneous objects	tini got qāndu three eyes' tini got caka 'three wheels' tini got tumgldu 'three dreams'
pula	round, light objects	tīni pula pūpdu 'three flowers' tīni pula ōsdu 'three mushrooms'
Repeaters: qep man $k \bar{r} r$ kari kuji	'village' 'tree' 'grass 'hole, den, cave' 'shadow, reflection'	tini qep qep-du 'three villages' tini man mandu 'three trees' tinn $k \bar{r} r$ kīrdu 'three (blades of) grass" tmi kari kari 'three holes' tini kuji kuji 'three shadows'

Numeral classifiers in Malto (North Dravidian)

The basic constraint: A noun phrase consists of a noun and a numeral phrase and the numeral phrase must exhibit a classifier

$$
\begin{gather*}
\text { NP } \tag{1}\\
\text { [NOUN CLASS: } a]
\end{gather*} \rightarrow \underset{\text { [NOUNCLASS: } a \text {] }}{\text { NumP }} \underset{\text { [NOUN CLASS: } a \text {] }}{\text { N' }}
$$

- The periphrastic pattern:
(2) $\underset{\text { [Nounclass: a] }}{\text { NumP }} \rightarrow$ Num $\underset{\text { Nounclass: a] }}{\text { Clasifier }}$
(3) a. tīni jen maler b. tīni maq ōydu three CLASSIFIER men 'three men'

5. But, no periphrasis with 1 and 2 :
(4) a. *eike maq $\bar{o} y d u$ one CLASSIFIER cow 'one cow'
b. *dūye maq $\bar{o} y d u$ two CLASSIFIER cow 'two cows'

Numeral classifiers in Malto (North Dravidian)

A synthetic pattern:
(5) $\underset{\text { [Nounclass: a] }}{\text { NumP }} \rightarrow \underset{\text { [Nounclass: a] }}{\text { Num }}$
(6) a. maq-ond $\overline{\text { ondu }}$ b. maq-s oydu

CLASSIFIER-one cow 'one cow'

CLASSIFIER-two COW
'two cows'

Another synthetic pattern: i or 2 humans

(7)	a.	```*eike jen maleh one CLASSIFIER man 'one man'```	b.	$\begin{aligned} & \text { *dūye jen maler } \\ & \text { two CLASSIFIER men } \\ & \text { 'two men' } \end{aligned}$
(8)	a.	*jen-ond maleh CLASSIFIER-one man 'one man'	b.	*jen-s maler CLASSIFIER-one men 'two men'
(9)	a.	ort maleh CLASSIFIER:one man 'one man'	b.	irw maler CLASSIFIER:two men 'two men'

Representations and Summary

(10)

three men
(11)

(12)

TABLE 2. Use of Malto numerals and classifiers in references to quantities of various types

$\begin{aligned} & \text { Noun } \\ & \text { CLASS } \end{aligned}$	The theoretical challenge			
	Numeral CLASSIFIER	QUANTITY		
		1	2	3 or more
jen class (= nouns with human reference)	jen	Portmanteau form: ort	Portmanteau form: inw	Analytic combination of numeral + classifier
maq class (= nouns with animate nonhuman reference)	maq	Bound numeral stem -ond with classifier's prefixal form	Bound numeral stem $-s$ with classifier's prefixal form	
dara class (= nouns referring to long, large objects)	dara			
etc.	etc.			

The theoretical challenge

- Can one define a single mechanism/principle that can relate different types/ degrees of synthetic expression with periphrastic expression?
- The default realization of a lexeme and its morphosyntactic property set is periphrasis and this occurs unless there is a "rule" (pattern) which specifies that some value(s) for some morphosyntactic property must be realized in a particular way and where the content cells with the most highly specified values "block" the type of realization associated with a less specified cell.

Realization rules for Malto numeral inflection (realizational approach)

Rule:	The realization of $\langle\mathrm{Y}, \sigma)$ is:	Conditions:
a.	" Y X", where X is the $\mathrm{\sigma}$-classifier.	〈 Y, ¢) is a cell in a Numeral paradigm.
b.	Xond, where X is the σ-classifier's prefixal form	(Y, © $)$ is a cell in a Numeral paradigm; Y is eike.
c.	Xs , where X is the σ-classifier's prefixal form.	$\langle\mathrm{Y}, \sigma$) is a cell in a Numeral paradigm; Y is dijue.
d.	ort.	$\langle\mathrm{Y}, \sigma$) is a cell in a Numeral paradigm; Y is eike, σ is (Noun CLASS.jen).
e.	irw.	$\langle\mathrm{Y}, \mathrm{\sigma})$ is a cell in a Numeral paradigm; Y is dijec; σ is (NOUN CLASS.jen\}.

Interaction of (regular) inflection with derivation

- Since, by hypothesis within the generative tradition, words with regular inflection are not stored in the lexicon and inflection occurs external to derivation, this should have consequences for how inflection interacts with derivation.
- In the weak lexicalist hypothesis all irregular inflection and derivation occur in the lexicon, while regular inflection occurs in the syntax: there is a split concerning the domains in which morphology occurs.
- In the strong lexicalist hypothesis all morphology occurs in the lexicon.

Lexical Integrity Hypothesis

- For many structuralists (e.g., Hockett), syntax was simply extended above the word.
- For many generativists (e.g., early Chomsky), morphology was simply syntax below the word.
- Lexicalist theories (Head Driven Phrase Structure Grammar, Lexical Functional Grammar) divide morphology and syntax into two distinct modules, each with its own primitives, objects, rules, etc. (Oddly even lexicalist theories are generally morpheme based.
- Lexical Integrity Hypothesis

Words are syntactic atoms, i.e., pieces of words cannot be manipulated by syntactic operations and cannot be accessible to elements outside of the word.

Lexical integrity

Mari case forms (Luutonen 1997:46): DATIVE more analytic than GENITIVE/ACCUSATIVE more analytic than LOCAL CASES:

$$
\text { DAT > GENITIVE/ACCUSATIVE }>\text { LOCAL CASES }
$$

I. poškuđo den joltaš-lan tə̧ye ojləšə̀m
neighbor and friend-DAT so say-PAST-ISG
'I said so to the neighbor and friend'
2. ? škol đa klub-ən ßujlatəšə̌št poyəneət school and club-GEN leaders assembled 'the leaders of the school and club assembled'
3. *škol đa klub-əško pörjen-šaməč tolət school and club-ILL men came ‘the men came to school and club’

Lexical integrity

- Anaphoric islands

Kim babyksat last night. It was very cut ${ }_{k}$.
Even the staunchest Nixonkite eventually had to repudiate him $_{k}$.

Lexical Phonology

- The lexicon is organized into levels for the creation of complex wordforms.
- Each level has its own morphological and phonological operations.
- (Sets of a affixes or other morphological operations are assigned to specific levels and after morphological rules have applied the form created by them is submitted to the phonological operations associated with that level.
- In this way, each earlier level in the lexicon feeds subsequent levels and one arrives at fully inflected and derived words (outfitted with all the relevant phonological adjustments.
- After the lexical component does its job, postlexical operations deal with e.g., clitics.

Lexical Phonology: Level ordering

LEXICON

Level ordering

- English

Level I: integrated affixes (cohering), irregular inflection, VN conversion

Level 2: neutral affixes, compounding, N-V conversion
Level 3: regular inflection
Post-lexical: clitics, external sandhi, i.e., across words.

- Generally, the lower the level, the less regular and productive the operations.
- Hypothesis is that all languages are organized similarly into levels, though they naturally differ with respect to how many and what is contained in each.

Lexical phonology

- Different kinds of derived environments trigger different phonological rules
- Phonological processes distinguish two types of rules:
- Type i: -ity, in-, -ical, -ion, -ian, -al, -y, -ous, ive
- Type 2: -ness, un-, -ly, re-, -ize, -able, -ful, -y, -ism
- Primary vs. secondary, cohering vs. non-cohering, integrated vs. neutral

Lexical phonology

- Class I affixes triggers stress shift, class 2 doesn't

Class I

| réal | reálity | nátural náturalness |
| :--- | :--- | :--- | :--- |
| cómedy | comédian | accómpany accómpaniable |
| pseúdonym | pseudónymy | bóunty bóuntiful |

- Class I affixes trigger assimilation, class 2 doesn't

Class I: intolerable, impossible, illegal, irregular
Class 2: untenable, unpardonable, unlawful, unreal

Lexical phonology

- Type a affixes can apply to stems, while Type 2 affixes apply to words
submit, deduce, friction
rewash, subhuman, kindness
- Type I affixes occur inside Type 2 affixes
*hopefulity
*infriendly
*kindnessical
naturalness
unproductive
Rastafarianism
- Level Ordering hypothesis (Kiparsky 1982)

Level ordering

- English stress depends on category
- Verbs have stress on the last syllable usúrp, cavórt
- Nouns have stress on the second-to-last syllable cárrot, dónkey
- V to N conversion: Level I, since it alters stress assignment

$$
\begin{aligned}
& \text { torméntv }_{\mathrm{V}} \rightarrow \text { tórment }_{\mathrm{N}} \\
& \text { recórd } \rightarrow \text { récord }_{\mathrm{N}}
\end{aligned}
$$

- N to V conversion: Level 2, since it doesn't alter stress páttern $_{\mathrm{N}} \rightarrow$ pátternv ${ }^{(}{ }^{*}$ pattérnv)

Level ordering

- According to stress assignment:
- V to N conversion is at level I
- N to V conversion is at level 2
- N to V conversion is much more productive that V to N conversion ("verbing weirds language")
- Given that N to V conversion is level 2, it will always have regular inflection, since, by hypothesis, retreating to a lower level is prohibited and inflection, therefore, can only be on level 3 .

Basic verbs ending in -ing/-ink are usually irregular, but not if derived from a noun
fling/flung, sting/stung, wring/wrung, ring/rang, sing/sang ring/ringed, wing/winged, ink/inked

Level ordering

- Noun compounds can become verbs at level 2 , since both noun compounds and N-V are on level 2.
to grandstand, to wallpaper, to snowball
- Verb compounds can't become nouns, since that occurs at level I: *an aircondition, *a stagemanage
- Regular vs. irregular inflection

```
grandstanded withstood
standv}->\mp@subsup{\mathrm{ standN}}{N}{}\quad\mathrm{ standv }->\mathrm{ stoodv I
grand +stand}\mp@subsup{N}{N}{}\quad\mathrm{ with +stoodv}
grandstand}N->\mathrm{ grandstandv 
grandstandv+ed }->\mathrm{ grandstanded 3
```


Level ordering

- Lexical phonology accounts for many facts about English morphology
- Irregular (but not regular) inflection occurs inside compounds mice infested, ${ }^{*}$ rats infested teethmarks, *nailsmarks
- Endocentric compounds take irregular inflection, but not exocentric compounds
milk teeth, *saberteeth
field mice, *Mickey mice, ?computer mice

Mice

Wired Style: Principles of English Usage in the Digital Age (ed. Constance Hale, HardWired, 1996) says: "What's the plural of that small, rolling pointing device invented by Douglas Engelbart in 1964? We prefer mouses. Mice is just too suggestive of furry little creatures. But both terms are common, so take your pick. We actually emailed Engelbart to see what he'd say. His answer? 'Haven't given the matter much thought.'

The Microsoft (R) Manual of Style for Technical Publications (ed. Amanda Clark, Microsoft Press, 1995) says: "Avoid using the plural mice; if you need to refer to more than one mouse, use mouse devices."

computer mice	458,000
computer mouses	44,000

