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ABSTRACT 

 

Computational models have become increasingly important in the field of child 
language acquisition over the past several decades. This reflects not only the 
increased accessibility of hardware and software, but more importantly, 
significant advances in the field of machine learning that have led to more 
sophisticated understanding about biologically plausible learning mechanisms. 
Computational models have been useful as tools to make verbal theories more 
precise, to explore complex interactions and emergent phenomena, and to 
generate predictions that lead to new empirical research. Issues that have been 
the target of modeling include so-called “burst” phenomena; U-shaped curves in 
learning; discovery of words, category, and grammatical structure; alternative to 
rule-based accounts; and the Poverty of the Stimulus hypothesis. 
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WHY COMPUTATIONAL MODELS? 

 
One of the striking developments in the field of child language acquisition within 
the past two decades has been the dramatic increase in the use of computational 
models as a way of understanding the acquisition process. In part, this has been 
driven by the wide-spread availability of inexpensive but powerful computers and 
the development of software that has made modeling more widely accessible 
than in previous periods. But there is a more interesting and scientifically 
significant reason for the phenomena. Computational theories of learning 
themselves have matured significantly since the middle of the 20th century. The 
renaissance in neural network (or connectionist) approaches, and more recently, 
the linkages with mathematical approaches such as Bayesian inference, 
information theory, and statistical learning have provided a much more 
sophisticated perspective on a number of issues relevant to language acquisition. 
 These models are necessarily used in conjunction with empirical 
approaches, but provide an important complement to such approaches. At the 
very least, computational models can be thought of as enforcing a level of detail 
and specificity in a theory or account that a verbal description might not possess.  
Furthermore, even in simple models, there may be interactions among the 
model’s components that are sufficiently complex that only through empirically 
running a simulation is it possible to know how the model will behave. Computer 
models also afford the opportunity to explore aspects of a phenomenon that may 
not be easily tested in the real world (either because the corresponding situation 
has not yet been studied, or perhaps may be infeasible to test). By systematically 
exploring the full parameter space of a theory one can sometimes gain insight 
into the deeper principles that underlie a behavior. And of course, a model may 
be amenable to analytic techniques that are not practical with real children. With 
children we can never do more than make inferences about the internal 
mechanisms that drive a behavior. Computer models, on the other hand, can in 
principle be complete understood. Finally, such models can serve as hypothesis 
generators. They often suggest novel ways of understanding a phenomenon. Of 
course, the validity of the hypothesis ultimately depends on empirical testing with 
real children. 
 In general, there have emerged two complementary approaches to 
modeling. In the first, the goal is determine that a problem can be solved without 
making specific claims that the solution implemented in the computer model is 
the same as in the child. These approaches tend to be more mathematical in 
nature. Work involving Bayesian inference, information theory, and statistical 
learning are of this sort. The second approach attempts to model the acquisition 
process a bit more directly. Learning plays a central role in these approaches, 
and the models’ behavior at intermediate stages is as much a focus as the ability 
to ultimately master the task. Connectionist models are examples of this second 
sort of model.  
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 Because of the field of computational approaches to language acquisition 
has grown so explosively in recent years—and is beyond the scope of the 
present review—what follows will be organized around the major issues that 
have been addressed (leaving aside a large number of interesting but less 
central phenomena). For excellent discussion of related computational 
approaches, see Brent (1996), Munakata and McClelland (2003) and 
MacWhinney (1998, 1999). 
 
ISSUES AND RESULTS 

It is useful to focus on the modeling work in terms of two major questions that 
have been addressed (bearing in mind the caveat above that, just as the field of 
language acquisition is itself large and diverse, there are many models that fall 
outside the scope of this taxonomy).  These questions have to do with: (1) 
Oddities in the “shape of change” (e.g., discontinuities or nonlinearities in 
acquisition, as in U-shaped curves); (2) What information is available in the input 
a child receives, and what can she infer from it (e.g., the problem of segmenting 
words or discovering grammatical categories or syntactic regularities). How can 
learning proceed in the face of putatively insufficient information (e.g., “Baker’s 
paradox” or the so-called “Poverty of the stimulus” problem)?  
 We shall consider each of these in detail, considering first what the issues 
are and then the computational models that have endeavored to understand the 
phenomena. 
 
 

Explaining the shape of change 

The simplest and possibly most natural pattern of development would probably 
be to assume a linear increase in performance over time. Such a pattern would 
be consistent with the assumption that the mechanisms that subserve learning 
remain relatively constant, and thus the increase in what is learned over every 
time increment should also remain constant. In fact, very few developmental 
patterns illustrate such linear tendencies. Development seems to proceed in fits 
and spurts, sometimes interrupted by long periods where little appears to change 
and sometimes even by phases where performance temporarily deteriorates. 
 Noteworthy examples of such nonlinearities abound in the realm of 
language acquisition, and have played a major role in theorizing about the 
mechanisms that make language acquisition possible.  The special ability of 
children to learning languages (the Critical Period) is a notable example of such a 
non-linearity. One influential explanation of this effect is that it reflects the 
existence of a specialized neural mechanism, the Language Acquisition Device, 
that is operative only during childhood (Chomsky, 1957; Johnson & Newport, 
1989).  
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 Another well-documented set of nonlinearities is exemplified by the rapid 
increases in word comprehension, production, and knowledge of grammar that 
occur in young children during their second year of life  (as in Figure 1, from 
Bates & Goodman, 1997). Clearly, something dramatic seems to be happening 
at the point where, for example, the child manifests a burst in the rate at which 
she learns new words. Many theorists have interpreted such bursts as evidence 
that something new has appeared in the child (e.g., Golinkoff, Mervis, & Hirsh-
Pasek, 1994; Markman, 1989; McShane, 1979). 

<Figure 1 near here> 

 A final example has played a particularly important role in the theoretical 
literature: the apparent U-shaped curve that characterizes children’s mastery of 
the past tense of the English verbal system. At the earliest stage, children know a 
small number of verbs, mostly of very high frequency and tending to be irregular; 
they typically produce the past tense correctly. At the second stage, the number 
of verbs in the child’s productive vocabulary increases and includes a larger 
number of regulars, some of which may be lower in frequency. At this stage, both 
observational evidence (over-generalization of the “+ed” pattern for regular 
verbs) and experimental data (ability to generate the regular version of nonce 
verbs) suggest that the child has learned a rule for forming the past tense. During 
the second stage, the rule is incompletely learned and misapplied to many 
(previously correctly produced) irregulars, resulting in a decline in overall 
performance. Finally, at the third stage, the correct forms for both regulars and 
irregulars are produced and the child appears to have learned not only the rule—
that applies to regulars—but the exceptions. These data have provided a 
powerful argument in favor of the psychological reality of rules. 
 
The critical period 
 A number of computational models have addressed these issues and in 
many cases provided alternative hypotheses for the phenomena. In attempting to 
understand how neural networks might deal with complex recursive structure in 
language, Elman  (1993) discovered that the network was able to process 
complex sentences only when it began either by initially exposed to simple 
sentences (a kind of neural network “motherese”), or if it began the learning 
process with a restricted working memory (similar to the limited WM found in 
young children, e.g., Santelmann & Jusczyk, 1998)). Elman called this the 
“starting small” effect. It is similar in spirit to Newport’s “less is more” hypothesis 
(Newport, 1990). In both accounts, the limitation on processing resources acts 
like a filter that temporarily hides the more complex aspects of language from the 
network (or child). Learning the simpler phenomena first creates a foundation of 
knowledge that makes it possible to subsequently learn more complex 
regularities. These accounts suggest that rather than being enabled by a special 
mechanism (the LAD) that is lost in adulthood, the explanation for the Critical 
Period is that—paradoxically—it is maturational limitations that facilitate the 
learning of language. However, it is also possible that there are multiple factors 
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that result in Critical Period effects. Using a model based on Hebbian learning (a 
computational paradigm closely related to the changes in Long Term Potentiation 
of synaptic junctions that results from synchronous firing of neurons) Munakata 
and Pfaffly (2004) demonstrated that even though the mechanism for plasticity 
did not change, what was learned early in a network’s life constrained what it 
could learn later. Marchman (1993) has demonstrated similar effects in networks 
that learn the past tense; networks that suffer simulated brain damage early in 
life recover much better compared to networks that are lesioned after much 
learning has occurred.  
 
The  vocabulary burst 
 A number of models have attempted to understand what factors might 
lead to the rapid acceleration in learning of new words that typically occurs in the 
middle of the second year of life. Plunkett, Sinha, Moller, and Strandsby (1992) 
trained networks to associate linguistic labels with visual images and observed 
that a burst-like increase in ability to learn labels occurred after early training. 
They also found that comprehension performance in the networks always 
exceeded (and preceded) production, that the networks exhibited prototype 
effects, and that they also show under- and over-extension phenomena found in 
children. Plunkett et al. attribute these behaviors to the network’s need to 
develop robust conceptual categories. Prior to this time, learning is slow and 
errorful. Once categories are learned, they facilitate the learning of new words. A 
similar effect was found in Elman (1998), who also found that there was a direct 
causal connection between vocabulary growth and the later emergence of 
grammar (cf. Bates & Goodman, 1997). The effect arose because essentially 
grammar was understood as a generalization over the commonalities in syntactic 
behavior of many words; with a small vocabulary these patterns are not evident, 
and so vocabulary growth is a necessary prerequisite to discovery of 
grammatical patterns (cf. Tomasello, 2000 for a similar account in the acquisition 
literature). 
 
The English past tense: Rules or connections? 
 The final example of nonlinearities in language acquisition is the U-shaped 
performance shown in English by many children as they learn the correct past 
tense forms of verbs. This phenomenon has long been seen as demonstrating 
the psychological reality of rules, insofar as we appear to be observing the 
moment in time when the rule for the past tense is being acquired (Berko, 1958; 
Pinker, 1991). Rumelhart and McClelland (1986) challenged this assumption by 
showing that when a neural network was trained, on an verb by verb basis, to 
produce the past tense of English verbs, it not only manifest a similar U-shaped 
performance curve, but also replicated in detail many of the more specific 
empirical phenomena found in children. Rumelhart and McClelland suggested 
that the network account provided an alternative to the traditional interpretation 
involving rules. Not surprisingly, this claim provoked a controversy that continues 
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to this day (Prince & Pinker, 1988). The debate has been lively, if at times 
acrimonious. And although the theoretical interpretation remains controversial, 
One of the most important outcomes of this debate has been the broadening—in 
terms both of languages studied and level of detail—of empirical research in 
English but also other languages including German, Hebrew, Icelandic, Italian, 
Norwegian, Polish, Spanish (Behrens, 1998; Clahsen, Aveledo, & Roca, 2002; 
Dabrowska, 2001; Dromi, Leonard, Adam, & Zadunaisky-Ehrlich, 1999; 
Eddington, 2002; Marchman, Plunkett, & Goodman, 1997; Marcus et al., 1992; 
Orsolini, Fanari, & Bowles, 1998; Ragnarsdottir, Simonsen, & Plunkett, 1999; 
Wittek & Tomasello, 2002; Xu & Pinker, 1995). This is an excellent example of 
ways in which computational models can refine the questions that are addressed 
and encourage new avenues of empirical investigation. The debate has also led 
to a more sophisticated understanding of the implications of the competing 
accounts not only for acquisition but other aspects of language processing and 
historical change (Hare & Elman, 1995; Marcus et al., 1992; McClelland & 
Patterson, 2002; Patterson, Lambon Ralph, Hodges, & McClelland, 2001; 
Plunkett & Juola, 1999; Plunkett & Marchman, 1993; Plunkett & Nakisa, 1997; 
Ragnarsdottir et al., 1999; Seidenberg & Bruck, 1990; Seidenberg & Hoeffner, 
1998). 
 
What information is available to a child, and what can be learned? 

Although obviously a child’s experience places a critical role in the learning 
process, the relationship between what the child hears and what she ultimately 
knows is in many cases not transparent. Indeed, it has been claimed that in 
some cases, there is no evidence at all for this knowledge (Crain, 1991; Pinker, 
1984). The putative insufficiency of the evidence available to a child—often 
called the Poverty of the Stimulus problem—has led to the conclusion that 
significant amounts of linguistic knowledge must be “pre-known” by a child. This 
knowledge constitutes a Universal Grammar that is part of the biological 
endowment every child begins with as she begins the task of learning the specific 
features of her own language.  
 There are two three issues that must be considered when evaluating such 
a hypothesis. The first involves what the actual input is that is available to 
children. Although that input is in fact massive in terms of word tokens, there is 
now reason to believe that it reflects a restricted range of the adult language 
(Cameron-Faulkner, Lieven, & Tomasello, 2003). Second, it is also clear that for 
a long period of time, children are actually much more conservative in their 
productions and stick closely to what they hear (Cameron-Faulkner et al., 2003; 
Lieven, Behrens, Speares, & Tomasello, 2003; Theakston, Lieven, & Tomasello, 
2003; Tomasello, 2003). Nonetheless, it is also obviously true that at some point 
children venture into uncharted territory, so the problem of what motivates such 
creative use of language is real. This leads to the third question, which is what 
theory of learning is assumed. At least some of the Nativist accounts have 
assumed a very weak kind of learning, essentially little more than a mental 
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tabulation of utterances (e.g., Pinker, 1984, p. 49ff). Computational models have 
been most successful in addressing this third question, by exploring the 
properties of more powerful—but hopefully psychologically plausible—learning 
mechanisms.  
 
Discovering where the words are: The segmentation problem 
 Unlike written language, in which words are delimited by white space or 
punctuation characters, spoken language yields few explicit clues as to where 
the boundaries between words are. For the infant, this poses a serious 
challenge, complicated by the fact that even the definition of what counts as a 
word differs dramatically across languages. How does the child thus learn (a) 
what can serve as a word? And (b) where the words are in continuous speech? 
 A number of computation approaches have converged in a similar insight, 
which is that at least to a first approximation, sequences of sounds that are highly 
associated are good candidates to be words. The manner in which this 
hypothesis is implemented varies (Brent & Cartwright, 1996; Christiansen, Allen, 
& Seidenberg, 1998; Elman, 1990) but the essential idea is that word boundaries 
are thus locations where the conditional probability of the next sound, given what 
has preceded it, is low. This can be seen in Figure 2, which shows the errors 
made by a network that has learned to predict the next letter in a sequence of 
words (white space removed) that make up a child’s story (Elman, 1990). Error 
tends to be greatest at the onsets of words, and decreases as more of a word is 
heard. Error maxima thus constitute likely word boundaries.  

<Figure 2 near here> 

 Another issue that concerns word learning is the problem of determining 
the syntactic and semantic categories of words. Here again, strong claims have 
been advanced that at least the categories much be innate, as well as innate 
principles that guide the child in make such determinations. The arguments have 
included the claim that the kind of distributional information available to a child 
(e.g., words in the same category tend to have similar distributional properties`; 
Harris, 1954; Maratsos & Chalkley, 1980) will fail given the complexity of real 
language input. However, a number of computational models have suggested 
otherwise. Considerably more information of this sort appears to be available to a 
child than might be imagined (Cartwright & Brent, 1997; Elman, 1995; Mintz, 
2002; Redington, Chater, & Finch, 1998). Again, these models differ in their 
details, but share the same insight that a word’s privilege of occurrence is a 
powerful indicator of its category. Importantly, there is an increasingly empirical 
literature involving learning of artificial languages by infants and young children 
that is highly consistent with the type of learning embodied in the computational 
models (see Gomez & Gerken, 2000; Saffran, 2001, for a discussion of this 
work). 
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Discovering grammar? The poverty of the stimulus problem 
 Perhaps the strongest claims regarding what the necessity for children’s 
innate linguistic knowledge arise in the context of grammar. As with the past 
tense debate, the controversy has been heated. It has also been complex, since 
it interacts not only with the long-standing Nature vs. Nurture debate but also 
questions regarding the extent to which linguistic knowledge is modular and 
independent from other cognitive processes (i.e., domain-specific), and whether 
the uniqueness of language to our species also reflects specialized neural—and 
presumably, also genetic—substrates that are entirely absent in other species. 
For two very different answers to these questions, see  (Elman, Bates, Johnson, 
Karmiloff-Smith, & et al., 1996) and (Pinker, 1994). 
 One basic question that arose early in the discussion is whether 
connectionist models were capable at all of capturing some of the apparently 
recursive nature of natural language (Fodor & Pylyshyn, 1988). Even if recursion 
in human language is only partial, there is good evidence that some kind of 
abstract internal representations must underlie the surface forms. Symbolic 
accounts that make use of syntactic trees provide one mechanism that might 
explain why, for example, the verb is in (1) is in the singular, agreeing with 
woman, rather than any of the other nouns in the sentence. 
 
(1)  The woman who Mary and Bob introduced me to last summer while I was 

visiting them in Paris on my way to Prague is really quite interesting. 

 

Similarly, tree-structured representations provide a formalism that makes 
possible hypotheses about why is (2) an acceptable sentence, whereas (3)—
which is very similar in meaning—is ungrammatical.  (It should be noted, 
however, that accounts of such differences are elusive and there is still not 
complete agreement within any framework about the explanation for these sorts 
of differences.) 
 
(2)  Who did you believe Annie saw? (Possible answer: I believed Annie saw 

Elvis.) 
(3)  *Who did you believe the claim Annie saw? (Possible answer: I believed 

the claim Annie saw Elvis.) 
  
 Claims that neural networks were in principle unable to deal with such 
linguistic complexities may be premature (Boden & Blair, 2003; Elman, 1991; 
Rodriguez, Wiles, & Elman, 1999). Their solution to the problem of recursion 
differs from classical discrete automata, but recurrent neural networks definitely 
have sufficient power to deal with complex grammatical constructions 
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(Siegelmann, 1995). More relevant to issues in language acquisition is whether 
these complex grammatical regularities can actually be learned, given the input 
to which a child might be exposed. 
 A number of computational models suggest a positive answer (e.g., 
Christiansen & Chater, 1999; Elman, 1991; Elman, 1993). One particularly 
challenging problem, and the one we will conclude with, was posed by Crain 
(Crain, 1991) and concerns what has been called Aux Inversion as a hypothesis 
to explain how certain kinds of questions are formed.   
 Crain argued that based on the evidence available to a child, such as 
question-answer pairs shown in (4) and (5), any account of grammar acquisition 
that relies solely on learning would be expected to produce the incorrect 
generalization that, for any declarative, the corresponding interrogative involves 
inversion of the first verb and first noun, as captured schematically by the rule 
shown in (6). 
 
(4) a. Mary is happy. 
 b. Is Mary happy? 
(5) a. Timmy can swim awfully fast. 
 b. Can Timmy swim awfully fast? 
(6) Declarative: Noun  AUX . . .   
 Interrogative: AUX Noun . . .   
 
But this rule would be wrong, because it predicts incorrectly that the interrogative 
that corresponds to (7a) would be (7b). In reality, the correct interrogative is (7c) 
(For convenience, underlining shows the location of the auxiliary prior to 
inversion.)  
 
(7) a, The boy who is smoking is crazy. 
 b. *Is the boy who __ smoking is crazy? 
 c.  Is the boy who is smoking __ crazy? 
 
Crain argues that children do not hear the sort of data (e.g., questions of the form 
in (7c)) until well past the period where they can be shown—by experimentally 
eliciting them—to correctly produce these forms. He concludes that this is strong 
evidence for the existence of an innate constraint that makes requires that 
abstract constituent structure be the basis for learning grammatical regularities. 
He calls this the “parade case” for an innate constraint. 
 To test this claim, Lewis and Elman (2001) constructed a simulation in 
which a recurrent neural network was trained on examples of well-formed 
sentences; the training data were generated to mimic the types and frequencies 
of sentences found in the Manchester corpora from the CHILDES databank 
(MacWhinney, 2000; Theakston, Lieven, Pine, & Rowland, 2001). Crucially, 
although there were many sentences of the form shown in (4) and (5), no 
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sentences of the forms shown in (7) were included. The network was then tested 
on both ungrammatical (7b) and grammatical (7c) inputs. Its clear preference 
was for the grammatical questions, despite never having seen similar sentences 
during training. 
 How did the network learn the true grammatical generalization? It turns 
out that there are many other sentences present in the input (to children as well 
as these networks) that provide ample evidence for the fact that noun phrases 
act as constituents. These include sentences such as those shown in (9). 
 
(9) (a) The bike with wheels belongs to me.  
  (Not: The bike with wheels *belong to me.) 
 (b) The cats my dog chases belong to our neighbor. 
  (Not. The cats my dog chases *belongs to our neighbor.) 
 

The input to the network is thus sufficient to motivate a number of 
generalizations. These involve learning about different grammatical categories 
(nouns, verbs, prepositions, complementizers, etc.); selectional restrictions 
imposed by verbs on their arguments; the form of simple declaratives; the form of 
simple interrogatives; and the fact that agreement relations (among others) must 
respect constituenthood. Although these are logically independent 
generalizations, they have the opportunity to interact. The critical interaction 
occurs when a complex sentence is also an interrogative. The network has never 
seen such interactions, but its ability to partial out independent generalizations 
also makes it possible to combine generalizations as they may interact. 
 There is an important lesson here, and it is a clear demonstration of the 
ways in which computational models—particularly those that involve learning—
can yield new insights into old problems. To a large degree, the question of what 
can be learned from the available input hinges crucially on what counts as input. 
Many of the claims regarding Poverty of the Stimulus have taken a 
straightforward and literal view of the input. If the target generalization to be 
learned involves strings of the form X, then the relevant input consists of strings 
of the form X. But this is a very limited view of the relationship between our 
experience and what we make of it. The Lewis and Elman simulation suggests 
that some of the more complex aspects of language learning may involve a good 
deal of what is really indirect evidence, and that inductive mechanisms of the sort 
instantiated in neural networks are capable of combining that evidence in novel 
ways to yield outcomes that are not transparently related to the input. Whether 
this is in fact also true of children of course can only be determined through 
empirical research. The importance of the computational simulations is that they 
open up a logical possibility that previously had been ruled out. 
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Figure 1. Median growth scores for word comprehension expressed as a 

percentage of available items (from Bates & Goodman, 1997). 
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Figure 2.  Performance of a simple recurrent network that has learned to predict 

the next letter in a short story. Error maxima are highly correlated with the 
onsets of a new word (from Elman, 1990). 

 


