- The Talking Heads Guessing Game
 - Speakers role:
 - Speaker agent randomly searches environment, locates an area of interest (context)
 - Focuses hearer's attention on same context
 - Chooses an object in context (topic)
 - Describes object to hearer

- The Guessing Game
 - Hearer's role:
 - Hearer tries to guess what speaker is referring to
 - Indicates guess by pointing at topic (focusing)
 - Game succeeds if hearer guesses right
 - Associations between word and category strengthened
 - If hearer guesses wrong
 - Speaker points to topic as well
 - Speaker and hearer adjust strength of association between lexical item and category

- Why Guessing Game can fail:
 - Speaker has no word for object of interest
 - Hearer does not have word
 - Hearer has word but has assigned it to some other concept
 - Speaker and Hearer have different vantage points

- If speaker has no word for object of interest.
 - Speaker creates word
 - Speaker and hearer strengthen association between new word and target

- If hearer doesn't have word,
 - Speaker points to target
 - Hearer creates association between new word and target
 - Speaker reduces strength of association between word and target

- If hearer has word, but it refers to a different concept
 - Hearer points to (wrong) target
 - Game fails
 - Speaker points to correct target
 - Hearer creates association between word and new target

- Carving up reality
 - No a priori categories are given to agents
 - Agents can perceive edges→contours→shapes, color, luminance, location of centers

- Correlates in biological Cognition
 - Cotton, thistle, flax
 - Human: clothing source (cotton,flax)/ weed (thistle)
 - Boll Weevil: food (cotton)/weeds (thistle & flax)
 - Absolute vs. relative reckoning systems
 - Young woman/old woman

- Speaker: categorizes topic as VPOS 0-0.5 says 'lu'
- Hearer: categorizes 'lu' as HPOS 0-0.5 says 'lu?' (which *lu* are you talking about?)
- Speaker: points to target
- Hearer: categorizes topic as VPOS 0-0.5

- Speaker and hearer have different vantage points
 - Assume agents both have Left/Right distinction
 - Left and Right have body based vantage point

- Correlates with metaphorical vantage points
 - Sandwich in a garbage can
 - Food or garbage?
 - Depends on life circumstances, personal tolerances, etc.
 - 16 year old murderer
 - Child or adult?
 - Depends on purposes of categorizer

- Ambuiguity in the system
 - Arises when agent has already associated a category with a word
 - Speaker introduces new word for same category
 - Negotiation takes place
 - Across population, forms become strengthened or pruned
 - Ambiguity can be maintained

- Achievements of Talking Heads Experiment
 - Simple robots with their own motives and perceptual systems created categories to discriminate and name objects in their environment
 - Interaction between robots produced simple languages -shared form-meaning mappings
 - Common script --> shared goal
 - Negotiation --> Game failure led to readjustment of association strengths for both speaker and hearer

- Can embodied agents demonstrate the evolutionary advantage of a shared communication system?
 - The Emergence of a 'Language' in an Evolving Population of Neural Networks (Angelo Cangelosi & Domenico Parisi, (1998) *Connection Science* 10:2
 - http://www3.isrl.uiuc.edu/~junwang4/langev/lo calcopy/pdf/cangelosi98theEmergence.pdf

- Evolution
 - Change in the shared properties of a species over generations
 - Within a species there is always some slight, random variation in the traits inherited by individuals.
 - Variations most conducive to reproductive success will tend to become more common with each generation.
 - Evolution is the accumulation of variations that are 'selected' by nature in this way and eventually become widespread in the population.

- Properties of a language
 - System of signal-meaning correspondences with the following properties:
 - Distinct categories labeled with distinct signals
 - Single signal tends to be used to label all the instances within a category
 - All the individuals in a population tend to use the same signal to label the same category

- Human Language
 - Each individual in a population acquires language through a process of development.
 - Presupposes that there is a language—system of conventional form-meaning associations—already in place.
 - Signal-meaning correspondences are not fixed. There is syntactic structure.

- Simpler language could develop if it provides benefit to user
 - Calling/locating sexual partner (*Webb*)
 - Signals with an informative function may increases survival chances for listener

- Less clear benefit to signal producer.

- Experimental Premises
 - Population of virtual organisms each inhabit an environment containing equal numbers of edible and poisonous mushrooms.
 - Consuming an edible mushroom increases energy (fitness), a poisonous mushroom decreases fitness.
 - The most fit organisms after specified life span produce offspring
 organisms that inherit the genetic code (weights) of the parent plus a 10% mutation.

- Importance of Mutation
 - The occurrence of mutation in the population of a species ensures that there is always a fresh supply of variation available—the 'fuel' of natural selection.
 - If mutant genes were to cease to occur, evolution would eventually come to a halt, resulting in a species made-up of more or less identical individuals, unable to adapt to changes in its environment.

Environment

- The effect of Language on Fitness
 - Mushrooms have perceptual properties detectable only when organism is immediately adjacent to mushroom.
 - A signal from a conspecific closer to a mushroom could help organism identify and approach food, making foraging more efficient and thereby increasing his reproductive chances

- Since greater fitness corresponds to increased reproductive success, the ability to categorize mushrooms should evolve.
- Could language emerge when only receiver is directly benefited by language.
- Pressure for whole population to evolve same language.

- Experimental Set-up
 - Organism inhabits 20x20 cell environment 10 edible and 10 poisonous mushrooms
 - Organism/mushrooms randomly placed in environment
 - Every organism lives 750 time units
 equal to 15 epochs of 50 learning cycles of neural network
 - After each epoch, environment repopulated with mushrooms

- Neural Networks in a nutshell
 - A neural network is a *function*, a means of mapping from inputs to output
 - A neural network is a classifier: it takes features as inputs (encoded numerically) and outputs categories (also encoded numerically)
 - Original output is random. Adjustments to function occur through *training*. Adjustments reduce error between output and actual values
 - Neural Networks are modeled after biological systems--have some properties of biological cognition

- Inputs to this neural network
 - Object Location: Angular distance from direction faced to closest mushroom (decimal number 0-1)
 - Perceptual Properties (20 types):
 edible 1111100000 + one change
 poisonous 0000011111 + one change
 - Language Signals: *3 bit encoding (8 possible)*
 - 000,001,010...
- Outputs from neural network
 - Movement code
 - 11 = forward, 01 = right, 10 = left, 00 = stay
 - Language Signal (encoded as above)

• Three populations of 100 organisms compared over 1000 generations:

No LanguageExternal LanguageEvolving Language

- Group 1: No language
 - Output signals emitted, never received.
- Group 2: External Language
 - Organism not adjacent to mushroom is fed input from external 'teacher'
 - External input is from established language
- Group 3: Evolving Language
 - Organism not adjacent to mushroom is fed input from a random naïve conspecific
 - At outset, neither organism has learned to categorize mushrooms
 - There is no *a priori* signaling system.

Results

Figure 2. Average fitness across 1000 generations of three different populations: without language, with externally imposed language and with evolved language. Each curve is the average of five different replications of the same simulation.

- Non-language users are less fit after 1000 generations.
- Both groups of language users are equally fit after about 400 generations.
 - Externally provided language provides steeper climb in beginning

- Summary of results
 - Emergence of a simple language through evolutionary processes possible when there is an associated reproductive advantage.
 - There is an apparent strong interdependence between the evolution of language and the evolution of cognition