The Lexicon (1) LIGN 170, Lecture 4

• Connecting words and concepts: Linked but separate

Lexicon

Concepts

- Connecting words and concepts: *Linked but separate*
- One word can have many concepts
 - bank: money *vs.* river
- One concept can have many words

- Connecting words and concepts: Linked but separate
- One word can have many concepts
 - bank: money *vs.* river
- One concept can have many words
 - pail vs. bucket

- Connecting words and concepts: Linked but separate
- One word can have many concepts
 - bank: money *vs.* river
- One concept can have many words
 - pail vs. bucket
 - sofa vs. couch

- Pseudowords have no meaning
 - Lewis Carrol's Jabberwocky:
 - Twas brillig, and the slithy toves...
- Unfamiliar words have no / vague meaning
 - quadrille french square dance
 - ostracod subclass of small crustaceans

- One concept may require multiple words to express
 - at the house of **French**: chez
- Words change in meaning depending on context
 - Tall tale vs. tall man
 - Light reading vs. light suitcase
 - Large poodle vs. large bear

• Do words and concepts interact?

- Sapir-Whorf Hypothesis:
 - Cognition is constrained by language
- But, concepts are not strictly constrained:
 - Dani has only two color terms: mola (light) and mili (dark)
 - But speakers can distinguish other colors in non-linguistic tasks

Roadmap for Today and Tuesday

- How is conceptual space organized?
 - Individual concepts

Today

Tuesday

- Categories/Relations between concepts
- How does the lexicon link to concepts?
 - How is the lexicon organized?
 - What information does it contain?
 - How do we access it?

Concepts

- How are concepts organized internally
 - Two kinds of theories:
 - Features
 - Real-world knowledge about concepts

Feature-based theories

- Features can be:
 - perceptual
 - functional
 - microstructural (composed of)
 - conventional
 - intrinsic
 - contextually-based

Classical view

• Set of necessary features to define an object

Triangle	Odd Numbers
geometric shape	number
three angles	not evenly divisible by two
three sides	

- All items which have these feature are equally good
- Categories have clear, precise boundaries

Birds

Birds

Family Resemblance

- Categories have characteristic features
 - common to many exemplars
 - most frequent features most important

- Birds:
 - feathers, beak, lays eggs
 - flies, eats bugs

Family Resemblance

- Categories have fuzzy boundaries
 - Core of commonly identified exemplars
 - Best example of a category is the **prototype**
 - Prototype may not actually exist

- Birds:
 - Core: robin, pigeon, seagull

Family Resemblance

- Categories have fuzzy boundaries
 - Core of commonly identified exemplars
 - Best example of a category is the prototype
 - Prototype may not actually exist

• Fuzzy because items at periphery are likely to share features with other categories

• Tomatoes:

 Many same functional properties as vegetables

- Eaten in lettuce salads
- Not made into pies or sweets
- But, has physical properties of fruits

- How could otherwise intelligent well-educated people argue that a chicken is a mammal?
 - Physical features
 - Lays eggs
 - Has beak, wings, feathers
 - Functional features
 - Is often cooked and eaten (like cows and pigs)

Typicality effects

- Semantic Verification Task:
- How long does it take people to judge that an X is a Y?
 - A robin is a bird.
 - An ostrich is a bird.

Supports idea of core and peripheral exemplars

What about classical examples?

Triangle	Odd Numbers
geometric shape	number
three angles	not evenly divisible by two
three sides	

• Even for these categories, people will rate "13" as a better odd number than "57"

- What counts as a feature?
- Features appear to be differently available
 - Depending on task

Is "floats" a feature of basketball?

- What counts as a feature?
- Features appear to be differently available
 - Depending on task

- What counts as a feature?
- Features appear to be differently available
 - Depending on task
 - Depending on context

- What counts as a feature?
- Features appear to be differently available
 - Depending on task
 - Depending on context

- What counts as a feature?
- Features appear to be differently available
 - Depending on task
 - Depending on context
- Situational (ad hoc) categories

Problems...

- What counts as a feature?
- Features appear to be differently available
 - Depending on task
 - Depending on context
- Situational (ad hoc) categories

Knowledge-based theories

- Focus on how and why items get grouped together into categories
- Features are cues to more complex understanding of categories

grey hair

grey hair

must be old enough to have children who can have children

Knowledge-based theories

- Focus on how and why items get grouped together into categories
- Features are cues to more complex understanding of categories

Psychological Essentialism

- People behave as if things have underlying natures that give them identity
- We know the underlying reason for features (or know that someone does)
- White vs grey
 - clouds / / hair

- Essentially a version of feature theory
 - Features have underlying quantifiable causes
 - Must have certain DNA structure to be a raccoon,
 - But in absence of portable DNA kit (now available at Toys'R'Us), we use obvious features
 - Knowing they are derived from the more fundemantal features

Psychological contextualism

• Certain contexts can provide bond between features in a concept(s)

Cup and bowl continuum

When mixed features: "cup" with tea "bowl" with soup

Psychological contextualism

- Certain contexts can provide bond between features in a concept(s)
- Distinction between intrinsic features and temporary context-dependent features

Concepts

- How are concepts organized internally
 - Features
 - Knowledge about concepts
- How are concepts related to each other and organized into a larger pattern?

Hierarchical networks

- Supporting evidence
 - Semantic distance effects
 - A canary is a bird
 - A canary is an animal

- Category-size effects
 - Larger categories take longer to verify

• Problems for strict hierarchical models

- Abstract concepts
- Strength of association
 - A canary sings. vs. A canary has skin.
 - Singing more frequently associated with canaries
- Equal members problem

• Problems for strict hierarchical models

- Abstract concepts
- Strength of association
 - A canary sings. vs. A canary has skin.
 - Singing more frequently associated with canaries
- Equal members problem
- Subset problem

- Standard subset effect
 - A robin is a bird vs. A robin is an animal.
 - But, for certain categories, people are faster to verify superordinate relations that are further away
 - A dog is an animal. vs. A dog is a mammal.
 - "Relatedness" measure

Feature comparison

- Two kinds of features
 - Defining: critical for category
 - Characteristic: common but not necessary for category
- Stage 1: Compare all features
 - Enough overlap to say yes?
- Stage 2: If no: Compare defining features only

- Problems with this approach
 - Early problems about features
 - How to define them
 - How to make them work with context

• Notion of "semantic similarity" still important

Another view

- Spreading activation model
 - Features are treated as concepts in their own right
 - Concepts are nodes
 - Associated concepts are connected
 - Activation spreads from node to node

Spreading activation

- More highly associated concepts are closer together in the network
- Proximity means activation
 - Typicality Effects
 - Robin is closer to bird than robin
 - Subset Effects
 - Dog is closer to animal than mammal

A note about knowledge

- The problem with spiders
 - A spider is a kind of ______
 arachnid, arthropod
 - Not actually an insect
 - But that is most frequent response
 - Knowledge of "correct" conceptual organization

Summary of concepts

- Concepts have substructure
 - Features (Context)
- Concept organization appears to have some hierarchical structure
 - Based on internal representations not direct real world
 - Not strictly taxonomic
 - Similarity plays an important role

Roadmap for Today and Tuesday

- How is conceptual space organized?
 - Individual concepts

Today

Tuesday

- Categories/Relations between concepts
- How does the lexicon link to concepts?
 - How is the lexicon organized?
 - What information does it contain?
 - How do we access it?