• <u>www.experimetrix.com/ucsd</u>

- Click on "new.user" at the left
- Fill in information
- Choose experiments to participate in under "sign.up"

Speech Perception LIGN 170, Lecture 2

Problems facing the listener

- Speech is rapid
 - 125-180 words per minute
 - 5-6 syllables per second
 - 25-30 phonetic segments (distinguishable pieces of sound) per second
- Speech is continuous
 - No pauses for word boundaries (<u>Czech BBC</u>)

Lack of invariance problem

- Production of a given phoneme is highly dependent on context
 - Coarticulation
 - Aids in rapid speech, but blurs acoustic boundaries
- Speaker variation Sounds differ depending on the size and shape of your vocal tract
 - Normalization means we still understand them

Ś

Outline for today:

- Vocal apparatus for producing language sounds
- Acoustic properties of language sounds
- Perception of these sounds
 - What properties do we use to
 - Discriminate between sounds
 - Identify sounds

Outline for today:

- Vocal apparatus for producing language sounds
- Acoustic properties of language sounds
- Perception of these sounds
 - What properties do we use to
 - Discriminate between sounds
 - Identify of sounds

How is speech produced?

- Subglottal system
- Larynx
- Vocal Tract

FIGURE 3.2

A schematic drawing of the vocal tract. Places of articulation: 1, bilabial; 2, labiodental; 3, dental or interdental; 4, alveolar; 5, palatoalveolar; 6, palatal; 7, velar; 8, uvular; 9, glottal.

Source: An Introduction to Language (4th ed.) (Figure 2.1, p. 36), V. Fromkin and R. Rodman, 1988, New York: Holt, Rinehart and Winston.

Consonants

		Place of articulation						
		Bilabial	Labiodental	Interdental	Alveolar	Palatal	Velar	
	Oral stop voiceless voiced	p (pin) b (bin)			t (tin) d (din)	7	k (kin) g (get)	
Manner of production	Nasal stop voiced	m (map)			n (nap)		ŋ (sing)	
	Fricative voiceless voiced		f (fin) v (van)	θ (thin) ð (than)	s (sin) z (zone)	∫ (shin) 3 (leisure)		
	Affricate voiceless voiced					t∫ (chin) d ₃ (gin)		
	Liquid voiced				l (law) r (raw)			
	Glides voiced					j (yes)	w (we)	

FIGURE 3.2

A schematic drawing of the vocal tract. Places of articulation: 1, bilabial; 2, labiodental; 3, dental or interdental; 4, alveolar; 5, palatoalveolar; 6, palatal; 7, velar; 8, uvular; 9, glottal.

Source: An Introduction to Language (4th ed.) (Figure 2.1, p. 36), V. Fromkin and R. Rodman, 1988, New York: Holt, Rinehart and Winston.

Vowels

Position of the tongue

FIGURE 3.2

A schematic drawing of the vocal tract. Places of articulation: 1, bilabial; 2, labiodental; 3, dental or interdental; 4, alveolar; 5, polatoalveolar; 6, polatal; 7, velar; 8, uvular; 9, glottal.

Source: An Introduction to Language (4th ed.) (Figure 2.1, p. 36), V. Fromkin and R. Rodman, 1988, New York: Holt, Rinehart and Winston.

Vowels	Front	Back
high mid low	i I e ɛ æ	U U Ə O A D a

Outline for today:

- Vocal apparatus for producing language sounds
- Acoustic properties of language sounds
- Perception of these sounds
 - What properties do we use to
 - Discriminate between sounds
 - Identify sounds

Acoustic properties of speech

- Fundamental Frequency (F0)
- Formants (F1, F2, F3...)

Acoustic properties of speech

- Fundamental Frequency (F0)
- Formants

"Phonetician"

FO - Pitch extraction

Acoustic properties of vowels

"steady state"

Speaker 1 adult male (Vocal tract length: 17cm)

Speaker 2 child female (Vocal tract length: 9cm)

- Normalization: Listeners can also extract information about speaker's vocal tract length from previous exposure and use it to identify the vowel in a subsequent word
 - Tricking this normalization process:
 - Sentence from speaker with long vocal tract: "Now I will say 'but'."
 - insert "but" from medium vocal tract:
 - heard as "bat"
 - insert "bat", heard as "bit"

Consonants

and and the second s

and the second second

Coarticulation

Outline for today:

- Vocal apparatus for producing language sounds
- Acoustic properties of language sounds
- Perception of these sounds
 - What properties do we use to
 - Discriminate between sounds
 - Identify sounds

Studies of speech perception

- Methods
 - Artificial speech
 - Take existing speech and alter it
- What acoustic cues are necessary for perception?
 - Discriminate between two sounds
 - Correctly identify sounds

Vowel discrimination

 In isolation (steady state), formant spacing gives reliable cues for vowels

- During connected speech other acoustic cues exist: duration and transitions between different sounds
 - How do these cues interact?
 - Which ones are most important?

- Jenkins, Strange & Edman (1983)
- CVC syllables with /b/ and different Vs

/bab//bib//baeb//bIb//baib/...

• Altered syllables to create 5 conditions:

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	Ν	Ν
Cs abutted	[A][C]	/bb/	Ν	Ν	Y

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	Ν	Ν
Cs abutted	[A][C]	/bb/	Ν	Ν	Y

• Identification task accuracy:

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	Ν	Ν
Cs abutted	[A][C]	/bb/	Ν	Ν	Y

- Identification task accuracy:
 - Silent V = Unmodified

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	Ν	Ν
Cs abutted	[A][C]	/bb/	Ν	Ν	Y

- Identification task accuracy:
 - Silent V = Unmodified

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	Ν	Ν
Cs abutted	[A][C]	/bb/	N	Ν	Y

- Identification task accuracy:
 - Silent V = Unmodified
 - More errors for Vowel only & Cs abutted

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	N	Ν
Cs abutted	[A][C]	/bb/	Ν	Ν	Y

- Identification task accuracy:
 - Silent V = Unmodified
 - More errors for Vowel only & Cs abutted
 - Most errors for Fixed Vowel

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	Ν	Ν
Cs abutted	[A][C]	/bb/	Ν	Ν	Y

- Identification task accuracy:
 - Silent V = Unmodified
 - More errors for Vowel only & Cs abutted
 - Most errors for Fixed Vowel
- Steady-state information alone not enough

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
Fixed Vowel	[][B][]	/a/	Y	N	Ν
Cs abutted	[A][C]	/bb/	N	N	Y

- Identification task accuracy:
 - Silent V = Unmodified
 - More errors for Vowel only & Cs abutted
 - Most errors for Fixed Vowel
- Steady-state information alone not enough

- Jenkins, Strange & Edman (1983)
- Steady-state information alone not enough
- Transition and duration information also relevant

			Steady-state	Duration	Transition
Unmodified	[A][B][C]	/bab/	Y	Y	Y
Silent V	[A][][C]	/b_b/	Ν	Y	Y
Vowel only	[][B][]	/a/	Y	Y	Ν
			Y		
Cs abutted	[A][C]	/bb/	Ν	Ν	Y

Consonants

- Not as accurately perceived in general
 - Quieter, shorter than vowels
- Stops (/b/, /p/, /k/ ...)
 - Lose identity in isolation
 - Must have formant transitions into vowel
 - Encoded: CV merged or fused for stops
 - Acoustic properties change based on context

Voice-onset-time (VOT)

• Best single measure for distinguishing voiced vs. unvoiced consonants

/b/ -- /p/ /d/ -- /t/ /k/ -- /g/

• VOT: time between the release of air and the onset of the voicing for the adjacent vowel

Voice-onset-time (VOT)

VOT in milliseconds

Categorical perception

- Vary VOT
- Ask subjects to identify CV pairs as /da/ or /ta/
- At 30ms VOT, subjects are markedly less accurate

Categorical perception

- Vary VOT between CV pairs
 - Each pair has
 20msec VOT
 difference
- Discrimination task
- Pairs judged same unless 30 msec boundary is crossed

Categorical perception

Contrast	Major Acoustic Cue
Voicing in initial stops [ba-pa]	Voice Onset Time
Voicing in final stops [ab-ap]	Duration of preceding vowel
Place in stops [ba-da-ga]	Start & Duration of F2
Voicing in final fricatives [as-az]	Duration of preceding vowel
Place in fricatives [sa-sha]	Frequency of noise
Liquids [la-ra]	Frequency of F3

Categorical perception of sound

- Categorical perception not limited to language
 - Music can categorize instruments, tones
- Categorical perception not limited to humans
 - Vervet monkeys
- VOT contrast not limited to humans
 - Chinchillas and Japanese Quail

VOT = 20

Food if /ba/

VOT = 20

VOT = 40

Food if /ba/

VOT = 40

- Last note on VOT and categorical perception:
- Bilinguals could have two different category perception systems, but they don't
 - Instead: single system of perceptual category boundaries at a midpoint between the two categories of the monolingual versions of the languages.

Top-down effects

- Phonemic restoration effect (Warren, 1970)
- Replace one phonetic segment with coughing sound
 - The governor met with the state legi*lature earlier in the year.
 - Subjects report hearing the phonetic segment
 - Subjects are not accurate in locating the cough in sentence

"Shadowing task" also revealed restoration effect (Warren & Warren, 1970)

- It was found that the *eel was on the axle.
- It was found that the *eel was on the shoe.
- It was found that the *eel was on the orange.
- It was found that the *eel was on the table.

• We live in a noisy world!

- When DO we notice errors or irregularities?
- Cole & Jakimik (1980)
 - Subjects instructed to press a button when they noticed an error
 - Most accurate for:
 - beginnings of words
 - place of articulation

Context Effects

• Mann & Repp (1981)

- Fooli[sh] <u>t</u>apes
- Christma[s] <u>c</u>apes
 - Ambiguous: /k/ or /t/

Context Effects

- Garnes & Bond (1976)
- Here's the fishing gear and the _____
- Check the time and _____.
- Paint the fence and ______.

- If ambiguous, then bait, date, gate.
- If not ambiguous, then no context effect

/ ate/

- Wrapping up acoustic processing
 - Acoustic cues can be used to identify phonemes
 - Vowels vs. consonants
 - Normalization
 - Coarticulation
 - Context aids identification process
 - Top-down processing